
Summation Notation
ECON 340: Economic Research Methods Instructor: Div Bhagia

The capital sigma (Σ) stands for summing everything on the right.

N!
i=1

Xi = X1 + X2 + ... + XN

When we have sets, the index i denotes the i-th position in the set.

Example: For X = {1,3,5,1}, we have "3
i=1 Xi = X1 + X2 + X3 = 1 + 3 + 5 = 9

Note: Another way of using a summation sign is to write
"

x∈A x, which refers to sum-
ming up all elements in A. Similarly, to sum up x for all possible values x, we can simply
write

"
x x.

Things you CAN do to summations:

1. Pull constants out of them or into them.

N!
i=1

bXi = b
N!

i=1
Xi

Example:
"2

i=1 bXi = bX1 + bX2 = b(X1 + X2) = b
"2

i=1 Xi

2. Split apart (or combine) sums (addition) or differences (subtraction)

N!
i=1

(bXi + cYi) = b
N!

i=1
Xi + c

N!
i=1

Yi

Example:
"2

i=1(Xi − 2Yi) = (X1 − 2Y1) + (X2 − 2Y2) = X1 + X2 − 2(Y1 + Y2). So we
can write

2!
i=1

(Xi − 2Yi) =
2!

i=1
Xi − 2

2!
i=1

Yi

1
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3. Multiply through constants by the number of terms in the summation

N!
i=1

(a + bXi) = aN + b
N!

i=1
Xi

Example:
"3

i=1 a = a + a + a = 3a.

Things you CAN NOT do to summations:

1. Split apart (or combine) products (multiplication) or quotients (division).

N!
i=1

XiYi !
N!

i=1
Xi ×

N!
i=1

Yi

Example: Note that
"N

i=2 XiYi = X1Y1 + X2Y2, while ("2
i=1 Xi) · (

"2
i=1 Yi) = (X1 +

X2)(Y1 + Y2) = X1Y1 + X2Y2 + X1Y2 + X2Y1.

2. Move the exponent out of or into the summation.

N!
i=1

Xa
i !

#
N!

i=1
Xi

$a

Example: Note that
"2

i=1 X2
i = X2

1 + X2
2 , while

%"2
i=1 Xi

&2
= (X1+ X2)2 = X2

1 + X2
2 +

2X1X2.
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Describing Data
ECON 340: Economic Research Methods Instructor: Div Bhagia

1 What is a variable?

A variable is multiple observations of the same measurement. Variables may be classi-
fied into two main categories: continuous and categorical (or discrete).

• Continuous: can take any value in an interval (e.g., income, age, GPA, rent, etc.)

• Categorical (or discrete): assigns observations in different groups (e.g., gender, race,
religious affiliation, educational attainment, etc.)

A categorical variable with two categories is called a binary variable.

Many questions in economics and other social sciences are concerned with cause-and-
effect relationships. When studying such questions, we refer to the cause as the inde-
pendent variable. The dependent variable is the effect. Its value depends on changes
in the independent variable. Finally, a control variable is a variable that might be asso-
ciated with both the dependent and the independent variables, and we might want to
account for it while studying our causal relationship of interest.

Control Variables

Independent Variable Dependent Variable

The dependent variable is also called the outcome or response variable. In contrast, the
independent variable is also called the predictor or explanatory variable. We will also
refer to control variables as confounding variables.

1
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2 Empirical Distribution of a Variable

A useful way to learn about a variable is by looking at how often different values of this
variable occur. This information is summarized by a variable’s empirical distribution. We
can look at the proportion of observations in each category for categorical variables.
In particular, we can calculate the relative frequency as follows:

Relative frequency =
Number of observations in a category

Total number of observations

If n denotes the total number of observations and nk denotes the number of observa-
tions that fall in category k , then we can calculate the relative frequency fk as follows:

fk =
nk

n

The relative frequency fk tells us the proportion of observations in category k .

The following is an example of a frequency distribution table for the outcome from 100
die rolls.

Outcome Count Proportion Cumulative

1 18 0.18 0.18
2 18 0.18 0.36
3 12 0.12 0.48
4 16 0.16 0.64
5 21 0.21 0.85
6 15 0.15 1

Total 100 1

The cumulative frequency is calculated by adding each frequency from a frequency
distribution table to the sum of its predecessors.

Continuous variables can take many different values, so it is not possible to look at
how many observations take each possible value. Instead, we can look at how many
observations fall in a particular interval.
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The graphical version of the frequency distribution table is a histogram. The x-axis of a
histogram presents the possible outcomes or intervals for the variable, while the y-axis
presents the number or proportion of outcomes in each group. Below is a histogram
of household income.
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Note that the distribution is skewed to the right due to a small number of outliers with
really high incomes.

3 Measures of Central Tendency

While a frequency distribution table or a histogram is a good way to learn about a
variable, we only sometimes want to present a long table or a figure. We want a single
number that can summarize this variable. A few options:

Mean: the average value

Median: the middle value

Mode: the most frequent value

To calculate the median, you find the middle value. If the number of observations is
even, you take the average of the two middle values.
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Mean and median are frequently employed in applied work. While the mean suffices
for most purposes, it is more sensitive to outliers than the median because it considers
all values, not just the middle values. For the distribution of household income above,
the mean is $112,900, and the median is $91,600. Mean earnings are higher than the
median, reflecting that themean is pushed upwards as it is more affected by the outliers
with really high incomes in the data.

To calculate the mean, you add up all the observations and divide by the number of
observations. A sample mean is usually denoted by X̄ and can be calculated as:

X̄ =
!n

i=1 Xi

n

Here n is the sample size.

The population mean is denoted by µ.

Some things to note about the mean:

•
!n

i=1 Xi = nX̄

• Deviations from the mean are always zero

n"
i=1

(Xi − X̄) =
n"

i=1
Xi − nX̄ = nX̄ − nX̄ = 0

• We can always write

X̄ =
!n

i=1 Xi

n
=

1
n

n"
i=1

Xi =

n"
i=1

Xi

n

Mean from Grouped Data

If data are grouped, we can use the frequency distribution table to calculate the mean.
In particular, for K groups, we use the following formula:
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X̄ =
!K

k=1 nk Xk

n
=

K"
k=1

fk Xk

Example. Say, we have the following observations on a variable X :

1,1,3,3,3,4,5

One way to find the mean:

1 + 1 + 3 + 3 + 3 + 4 + 5
7

=
20
7

Another way to find the mean:

Xk nk fk fk Xk

1 2 2/7 2/7
3 3 3/7 9/7
4 1 1/7 4/7
5 1 1/7 5/7

Total 7 1 20/7

Note that both approaches are equivalent, as all we do by using the frequency distri-
bution table is group observations with the same values.

1 + 1 + 3 + 3 + 3 + 4 + 5
7

=
(2 × 1) + (3 × 3) + (1 × 4) + (1 × 5)

7

= 2.
1
7
+ 3.

3
7
+ 4.

1
7
+ 5.

1
7

Weighted Mean

The weighted mean of a set of data is given by:

X̄ =
!n

i=1 ωi Xi!n
i=1 ωi

where ωi is the weight of the ith observation. When weights sum up to 1 (i.e.
!n

i=1 ωi =

5



ECON 340: Economic Research Methods Div Bhagia

1) we can simply write the weighted mean as:

X̄ =
n"

i=1
ωi Xi

When we calculate the unweighted mean, we put equal weight on all observations in
the data. However, sometimes we want to put a higher weight on some observations
than others; in such cases, we use the weighted mean.

4 Percentiles

The Pth percentile is a value such that P% of observations are at or below that number.

The 50th percentile is called the median. The 25th and 75th percentiles are called
the 1st and 3rd quartiles, respectively.

5 Measures of Variance

Measures of central tendency tell us about the average observation in the data. How-
ever, it doesn’t say anything about this variable’s dispersion or variation. One way to
learn about dispersion would be to look at the minimum and maximum values a vari-
able takes. This is called the range of the variable. Another way is to look at how far
observations are away from the mean, so calculate the variance as follows.

Population Variance

σ2
X =

1
N

N"
i=1

(Xi − µX)2

Sample Variance

S2
X =

1
n − 1

n"
i=1

(Xi − X̄)2

If there is more dispersion in the data, the variance will be higher. This is because we
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calculate the mean by taking the average of square deviations from the mean. If many
observations are further below or above the mean, the sum of square deviations will
be larger.

For the sample variance, the denominator is n − 1 instead of n. This is because obser-
vations in the sample are closer to the sample mean than the population mean. The
variance estimator uses the sample mean and hence underestimates the actual vari-
ance of the population. Dividing by n − 1 instead of n corrects for that bias.

However, it isn’t easy to interpret the variance since it is in squared units. So we often
convert the variance back to its original units by taking the square root of it. This
quantity is called the standard deviation.

Standard Deviation
σX =

#
σ2

X SX =

#
S2

X

Example.

Xi Xi − µ (Xi − µ)2

2 -3 9
5 0 0
8 3 9

Total 0 18

We can calculate the variance as follows:

σ2
X =

1
3

3"
i=1

(Xi − µX)2 =
18
3
= 6

The standard deviation is σX = 2.45.

Note that we can use the frequency distribution table for grouped data to calculate the
variance. In which case,

σ2
X =

K"
k=1

fk(Xk − µX)2

7
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For the sample variance, we will need to do the n − 1 correction as follows:

S2
X =

n
n − 1

K"
k=1

fk(Xk − X̄)2

6 Z-Score

Z-score is defined as:
Z =

X − µ
σ

Z-score tells us how many standard deviations any particular observation is away from
the mean.

Example. Saywehave twohypothetical countriesMushroomKingdom (MK) andBowser’s
Kingdom (BK). Now say

µMK = 50,000 µBK = 50,000

σMK = 3,000 σBK = 5,000

Someone earning $ 45,000 in MK is 5000/3000 = 1.66 standard deviations below
the mean. While someone earning $ 45,000 in BK is 5000/5000 = 1 below the mean.
Why the difference? Z-score standardizes both distributions and tells us how many
people are between the person who earns 50K and 45K.

7 Correlation and Covariance

While so far, we have been talking about describing one variable. Most often, we are
interested in the relationship between two different variables. For instance, we might
be interested in whether cars with better fuel economy have lower horsepower. To
learn about such relationships, we can calculate the covariance:

σXY =
1
N

N"
i=1

(Xi − µX)(Yi − µY ) (Population)

8
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SXY =
1

n − 1

n"
i=1

(Xi − X̄)(Yi − Ȳ ) (Sample)

Covariance indicates whether there is a positive or negative relationship between two
variables.

Why does this formula work? If it is, in fact, true that there is a negative relationship
between fuel economy as measured by MPG and horsepower. Then for many obser-
vations in our data, (Xi − µX)(Yi − µY )will be negative. (Xi − µX)(Yi − µY ) is negative every
time Xi is above its mean but Yi is below its mean or vice versa.

Similarly, (Xi − µX)(Yi − µY ) is positive for any observation if both Xi and Yi are above the
mean. The covariance is positive if (Xi − µX)(Yi − µY ) is positive on average. If there is no
clear relationship between the two variables, for some observations, (Xi − µX)(Yi − µY )
will be negative, while for some, it will be positive, leading the covariance to go towards
0.

In other words, if two variables tend to be above average at the same time or below
average at the same time, then we add a positive number to the numerator for the
covariance for most observations, increasing the covariance. If they have nothing to
do with each other, we add a positive number sometimes and a negative number other
times, canceling each other and giving us a covariance of 0.

The upper and lower limits for the covariance depend on the variances of the variables
involved. These variances, in turn, can vary with the scaling of the variables, so even
a change in the units of measurement can change the covariance. Thus, covariance is
only helpful in finding the direction of the relationship between two variables and not
the magnitude.

We can obtain the correlation coefficient of two variables by dividing the covariance of
these variables by the product of the standard deviations of both variables. Correlation
also indicates the strength of the relationship in addition to the direction.

ρXY =
σXY

σXσY
(Population)

rXY =
SXY

SX SY
(Sample)

9
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Things to note about the correlation coefficient:

• Measures the strength and direction of the linear relationship between two vari-
ables

• Bounded between −1 and 1

• If ρ = 0, there is no linear relationship between the two variables. If ρ = 1 or
ρ = −1, there is a perfect linear relationship.

• If ρ > 0, then when X is above (below) X̄ , Y is above (below) Ȳ .

• If ρ < 0, then when X is above (below) X̄ , Y is below (above) Ȳ .

Finally, correlation is not causation! Particularly for two reasons:

1. Reverse causality: A high correlation between education and household income
could come from either “more education→ higher household income” or “higher
household income→ more education.”

2. Other factors: It could be another factor like generational wealth is correlated
with both the likelihood of getting more education and having a higher household
income.

10



Random Variables
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1 Single Random Variable

A random variable is a variable that takes different values under different scenarios.
The likelihood of these different scenarios is summarized by the distribution of the
random variable. We will denote a random variable by X and realizations of it by x.

Random variables can either be discrete or continuous. A discrete random variable has
a countable number of possible values. While continuous random variables can take
any value in a given interval.

1.1 Discrete Random Variables

The probability distribution function (PDF) for a discrete random variable X is given by:

f (x) = Pr(X = x)

where 0 ≤ f (x) ≤ 1 for all x and
∑

x f (x) = 1.

The cumulative distribution function (CDF) for a discrete random variable X is given by:

F(x0) = Pr(X ≤ x0) =
∑
x≤x0

f (x)

Example. X is the outcome of rolling a die.

x f (x) F(x)

1 1/6 1/6
2 1/6 2/6
3 1/6 3/6
4 1/6 4/6
5 1/6 5/6
6 1/6 1

1
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Figure 1: Outcome from a Die Roll

(a) Probability Distribution Function (b) Cumulative Distribution Function

Bernoulli Random Variable is a special type of discrete random variable that only takes
two values 1 and 0. It is also called a binary variable.

X =



1 with probability p

0 with probability 1 − p

1.2 Continuous Random Variables

Because of continuum of possible values, it is not feasible to list the probability of each
possible value of a continuous random variable. So we instead have the probability
density function (PDF), denoted by f (x). The area under the curve f (x) gives us the
probability of X falling in certain intervals. The probability density function is defined as:

Pr(a ≤ x ≤ b) =
∫ b

a
f (x)∂x

where f (x) > 0 for all x and
∫ ∞
−∞ f (x)∂x = 1.

Note that for continuous random variables, Pr(X = x) = 0. This is just to say that it
is very very unlikely that any particular value will be realized because there are infinite
possibilities.

The integral
∫ b

a is the continuous analog of the sum. You don’t need to know how to
solve an integral, but remember it is like taking a sum over continuous values. The limits

2
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of the integral, a and b, define the interval over which we are taking this sum.

The cumulative density function (CDF) for a continuous random variable X is given by:

F(x0) = Pr(X ≤ x0) =
∫ x0

−∞
f (x)∂x

Note that, Pr(a ≤ x ≤ b) = F(b) − F(a).

Example. Let’s say the distribution for the height of individuals in the world is given by
the following probability density function:

Weneed to find the corresponding area under the curve to find the probability of height
being in particular intervals.

(a) Pr(150 < X < 175) (b) Pr(X < 150)

The CDF corresponding to the above PDF looks like:

3
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1.3 Expectation and Variance of Random Variables

The expectation or expected value or the mean of a random variable gives us the aver-
age value of this variable over many repeated trials or occurrences. We can compute
the expectation as a weighted average of possible outcomes, where the weights are
probabilities.

The expectation of a discrete random variable is given by:

µX = E(X) =
∑

x

x f (x)

The expected value for a continuous random variable is given by:

µX = E(X) =
∫

x
x f (x)∂x

The variance measures the dispersion or the “spread” of a probability distribution. The
variance for a random variable is given by:

σ2
X = Var(X) = E[(X − µX)2]

In other words, variance is the expected value of the square of deviations of X from its
mean.

4
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Using the definition of expectation for a discrete random variable, we can write:

σ2
X = Var(X) = E[(X − µX)2] =

∑
x

(x − µX)2 f (x)

Alternative formula for the variance: Var(X) = E[(X − µX)2] = E(X2) − µ2
X .

Variance is in units of the square of X . Therefore we use standard deviation, which is
the square-root of variance:

σX =

√
σ2

X

Example. We can calculate the expected value and variance for the outcome of rolling
a die as follows:

x f (x) x f (x) (x − µX)2 f (x)

1 1/6 1/6 (-2.5)2/6
2 1/6 2/6 (-1.5)2/6
3 1/6 3/6 (-0.5)2/6
4 1/6 4/6 (0.5)2/6
5 1/6 5/6 (1.5)2/6
6 1/6 6/6 (2.5)2/6

Total - 21/6 17.5/6

µX = E(X) =
∑

x

x f (x) = 21
6
= 3.5

Var(X) =
∑

x

(x − µX)2 f (x) = 17.5
6

Example. The expected value and variance for a binary random variable that takes value
1 with probability p and 0 with probability 1 − p is given by:

µX = E(X) =
∑

x

x f (x) = 1.p + 0.(1 − p) = p

Var(X) =
∑

x

(x − µX)2 f (x) = (1 − p)2.p + (0 − p)2.(1 − p) = p(1 − p)

5
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Using the alternative formula for variance:

Var(X) = E(X2) − µ2
X = 12.p + 02.(1 − p) − µ2

X = p − p2 = p(1 − p)

2 Normal and Standard Normal Distribution

2.1 Normal Distribution

There are lots and lots of probability distributions that are used for modeling different
variables. For example, uniform distribution is a distribution with constant probability.
There are many more, Bernoulli, binomial, gamma, beta, Poisson, and so on.

However, one distribution that appears over and over again is the normal distribution.
The distribution of a lot of things like height, birthweight, IQ, etc. is normal. The normal
distribution is symmetric (i.e., the left and right tails are the same sizes and there’s no
skew). For this reason, sometimes it is informally referred to as a bell curve. We express
normal distribution with mean µ and variance σ2 as follows:

N(µ,σ2)

Figure 2 presents normal distributions with different means and variances.

The distribution of height that we saw in the above example was a normal distribu-
tion with a mean of 169 and a variance of 225. In which case, we can write height ∼
N(169,225), which is short-form for saying height is normally distributed with mean
169 and variance 225.

2.2 Standard Normal Distribution

The normal distribution with mean 0 and variance 1 is called the standard normal dis-
tribution and is denoted by N(0,1). Random variables that have a N(0,1) distribution
are often denoted by Z .

In fact, we can standardize any normally distributed variable into a standard normal

6
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Figure 2: Normal distributions with different means and variances

variable by subtracting the mean of the normal variable from each value in the distribu-
tion and then dividing by the standard deviation of the distribution. Given X ∼ N(µ,σ2),
the standardized random variable is given by:

Z =
X − µ
σ

Here, Z ∼ N(0,1). To see why this is the case, note that when we standardize X , we
subtract themean µ from each value of X . This has the effect of shifting the distribution
so that its center is at 0. Next, we divide each value by the standard deviation σ. This
has the effect of scaling the distribution so that its spread equals 1.

7
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2.3 Finding the area under the curve

We are often interested in finding the probability that a random variable lies in a par-
ticular interval. For example, say X ∼ N(3,16), and we want to calculate Pr(X ≥ 5). As
we said before, to find this probability, we need to calculate the following area under
the curve:

−5−3−1 1 3 5 7 9 11

2
4
6
8

·10−2

X

f(
X
)

However, it can be difficult and time-consuming to calculate the area by hand. Instead,
we can standardize this variable and use the standard normal table to find this area. The
standard normal table provides the area under the standard normal distribution curve
for different values of Z .

Given X ∼ N(3,16),
Z =

X − 3
4

∼ N(0,1)

Note that,

Pr(X ≥ 5) = Pr
(

X − 3
4

≥ 5 − 3
4

)
= Pr(Z ≥ 0.5)

Wecan now refer to the standard normal table and find that Pr(Z ≥ 0.5) equals 0.3085.
The figure below presents this probability as the area under the curve standard normal
curve.

Given X ∼ N(µ,σ2), general recipe to find Pr(x0 < X < x1):

• Find z0 = (x0 − µ)/σ and z1 = (x1 − µ)/σ

• Use standard normal table to find Pr(z0 < Z < z1)

8
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−1.96 0 0.5 1.96

0.1

0.2

0.3

Z
f(

Z
)

Example. Given X ∼ N(3,16), we want to find Pr(2 < X < 5). Here x0 = 2, x1 = 5, we
can find that z0 = (2 − 3)/4 = −0.25 and z1 = (5 − 3)/4 = 0.5. Now we just need to
look at the standard normal table and find Pr(−0.25 < Z < 0.5).

Alternatively, sometimes we wish to identify the value of x for which the probability
Pr(X < x) or Pr(X > x) equals a specific value p. This can be achieved in a similar
manner by using the standard normal table. In particular, we need to find the corre-
sponding value z that satisfies Pr(Z < z) or Pr(Z > z), and then transform it back to
obtain x.

Given X ∼ N(µ,σ2) and Pr(X < x) = p, to find x :

• Use standard normal table to find z where Pr(Z < z) = p

• Find x = µ + z · σ

This follows analogously for when we are given Pr(X > x) = p.

3 Multiple Random Variables

3.1 Joint and Marginal Distribution

The joint probability distribution of two discrete random variables X and Y , is the prob-
ability that the random variables simultaneously take on certain values.

f (x, y) = Pr(X = x,Y = y)

9
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Example. The table below gives us the probability of possible commute times and rain
on a given day.

Rain (X = 1) No Rain (X = 0) Total

60-min commute (Y = 60) 0.3 0.2 0.5
30-min commute (Y = 30) 0.1 0.4 0.5

Total 0.4 0.6 1

The marginal probability distribution of a random variable Y is just another name for its
probability distribution. In particular,

f (y) = Pr(Y = y) =
∑

x

Pr(X = x,Y = y)

For example, the probability of having a 60-minute commute is given by the sum of
probability of having a 60-minute commute and no rain and the probability of having a
60-minute commute and rain.

Pr(Y = 60) = Pr(X = 1,Y = 60) + Pr(X = 0,Y = 60) = 0.3 + 0.2 = 0.5

3.2 Conditional Probability and Bayes Rule

The distribution of a randomvariableY conditional on another randomvariable X taking
on a specific value is called the conditional distribution of Y given X .

f (y |x) = Pr(Y = y |X = x) = Pr(X = x,Y = y)
Pr(X = x) =

f (x, y)
f (x)

For example, the probability of having a 60-minute commute conditional on rain is
given by:

Pr(Y = 60|X = 1) = Pr(X = 1,Y = 60)
Pr(X = 1) =

0.3
0.4
=

3
4

While the probability of having a 60-minute commute conditional on no rain is given

10
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by:
Pr(Y = 60|X = 0) = Pr(X = 0,Y = 60)

Pr(X = 0) =
0.2
0.6
=

1
3

Remember, the unconditional probability of having a 60-minute commute was given
by 0.5.

The conditional expectation of Y given X is the mean of the conditional distribution of
Y given X .

E(Y |X = x) =
∑
y

yPr(Y = y |X = x)

For the example above,

E(Y |X = 1) = 60.Pr(Y = 60|X = 1) + 30.Pr(Y = 30|X = 1) = 60 · 3
4
+ 30 · 1

4
= 52.5

Similarly,

E(Y |X = 0) = 60.Pr(Y = 60|X = 0) + 30.Pr(Y = 30|X = 0) = 60 · 1
3
+ 30 · 2

3
= 40

So by comparing E(Y |X = 1) and E(Y |X = 0), we can find out how rain affects the
average commute time.

Bayes’ rule says that the conditional probability of Y given X is the conditional proba-
bility of X given Y times the relative marginal probabilities of Y and X :

Pr(Y = y |X = x) = Pr(X = x |Y = y)Pr(Y = y)
Pr(X = x)

This is a very useful law because it says that we can deduce conditional probabilities
from the reverse conditional probability with the help of marginal probabilities.

11
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3.3 Law of Iterated Expectations

The mean of Y is the weighted average of the conditional expectation of Y given X ,
weighted by the probability distribution of X .

E(Y ) =
∑

x

E(Y |X = x)Pr(X = x)

More compactly,
E(Y ) = E(E(Y |X))

E.g. the mean height of adults is the weighted average of the mean height of men and
women, weighted by their proportions.

3.4 Independence and Uncorrelatedness

Two random variables X and Y are independently distributed, or independent, if know-
ing the value of one of the variables provides no information about the other. That
is,

Pr(Y = y |X = x) = Pr(Y = y)

Then by Bayes’ rule:

Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y)

Example: Two consecutive coin tosses.

Note: We can equivalently say that X and Y are independent if E(Y |X) = E(Y ).

Covariance is a measure of the extent to which two random variables move together.
Let X and Y be a pair of random variables, then the covariance of X and Y is given by:

σXY = Cov(X,Y ) = E[(X − µX)(Y − µY )] = E(XY ) − µX µY

The correlation between X and Y is given by:

ρXY = corr(X,Y ) = Cov(X,Y )
σXσY

where − 1 ≤ ρ ≤ 1

12
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X and Y are uncorrelated if ρXY = σXY = 0 i.e. E(XY ) = E(X)E(Y ).

If X and Y are independent, then they are also uncorrelated.

E(Y |X) = E(Y ) → ρXY = 0

However, it is not necessarily true that if X and Y are uncorrelated, then they are also
independent.

4 Linear Functions of Random Variables

4.1 Linear Functions of a Single Random Variable

If X is a random variable and Y = a + bX , then Y is also a random variable with

E(Y ) = a + bE(X) Var(Y ) = b2Var(X)

In addition, a linear transformation of a random variable does not change the shape of
the distribution. So if X is normal, Y will also be normal.

Example. Let us calculate the expectation and variance for the Z score:

Z =
X − µX

σX

Note that we can write,
Z = − µX

σX
+

1
σX

· X

So a = − µXσX and b = 1
σX
, then by the above formulas:

E(Z) = a + bE(X) = − µX

σX
+

1
σX
µX = 0

Var(Z) = b2Var(X) = 1
σ2

X

· σ2
X = 1

13
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So if X ∼ N(µX,σ
2
X ), then Z ∼ N(0,1).

4.2 Linear Combination of Two Random Variables

X and Y is a pair of random variables, define

W = aX + bY

Then the expectation of W is given by:

E(W) = aE(X) + bE(Y )

And the variance of W is given by:

Var(W) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

If X and Y are independent then Cov(X,Y ) = 0, so in that case Var(W) = a2Var(X) +
b2Var(Y ).

4.3 Linear Combination of Several Random Variables

For random variables, X1, X2, ..., Xn:

E(X1 + X2 + ... + Xn) = E(X1) + E(X2) + ... + E(Xn)

Var(X1 + X2 + ... + Xn) =
n∑

i=1
Var(Xi) + 2

n−1∑
i=1

K∑
j=i+1

Cov(Xi, X j)

If X1, X2, ..., Xn are independent random variables, then Var (∑i Xi) =
∑

i Var(Xi).

Note that a linear combination of several normally distributed random variables will
also be normal.
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Sampling and Estimation
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We often want to make inferences about a population. But a lot of times, it is only
possible to collect data from some individuals in the population. Therefore, we collect
data from a smaller subset of the population, called a sample. However, the sample
must be selected carefully to ensure that the inferences we make from the sample
accurately reflect the characteristics of the population.

One way to achieve a representative sample is through the use of random sampling.
In a random sample, each individual in the population has an equal chance of being
selected for the sample. This helps reduce bias that could be introduced if individuals
were chosen based on specific characteristics.

Sample statistics, such as the sample mean or sample standard deviation, are quantities
calculated from a sample of data. Because the sample is only a subset of the entire
population, sample statistics vary from sample to sample. This variability means that
sample statistics are random variables.

To see why sample statistics are random variables, consider the sample mean as an
example. Supposewe takemultiple random samples of the same size from a population
and calculate the mean for each sample. We expect these sample means to vary from
sample to sample due to the variability inherent in the sampling process. Thus, the
sample mean is a random variable since it can take on different values depending on
the sample that is selected.

1 Distribution of Sample Mean

Let X1, X2, ..., Xn denote independent randomdraws (random sample) from a population
with mean µ and variance σ2. We can calculate the sample mean as follows:

X̄ =
1
n

n!
i=1

Xi

1
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We can show that the expectation and the variance of the sample mean are given by1:

E(X̄) = µ Var(X̄) = σ
2

n

The expected value of the sample mean is equal to the population mean, which means
that if we were to take an infinite number of random samples and calculate the mean
of each sample, the average of these sample means would be equal to the population
mean.

The variance of the sample mean refers to the amount of variability or spread that we
would expect to see in the sample means that we would obtain if we were to take
multiple random samples from a population.

The variance of the sample mean is equal to the population variance divided by the
sample size. From this formula, we can see that when sample size increases, the vari-
ance of the sample mean decreases, and the sample mean becomes a more precise
estimator of the population mean. This is because by increasing the sample size, we
can reduce the effects of random variation and sampling error.

On the other hand, variance of the sample mean increases with the variance of the
population. This means that when we take repeated random samples of a fixed size
from a highly variable population, we are likely to observemore variability in the sample
means from sample to sample.

The distribution of the sample mean is normal if either of the following is true:

• The underlying population is normal
• The sample size is large, say n ≥ 100

The first one follows from the sample mean being a linear combination of normally
distributed variables. The latter is implied by the Central Limit Theorem.

1Derivations at the end.
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Central Limit Theorem

Central Limit Theorem (CLT) states that if X1, X2, .., Xn are drawn randomly from a pop-
ulation with mean µ and variance σ2, sample mean X̄ is normally distributed with mean
µ and variance σ2/n as long as n is large.

X̄ ∼ N(µ,σ2/n)

In other words, CLT states that as we increase the sample size, the distribution of the
sample means tends to approximate a normal distribution, regardless of the underlying
distribution of the population.

2 Estimators

An estimator θ̂ for the population parameter θ is said to be unbiased if

E(θ̂) = θ

Examples: X̄ for µ, s2 for σ2 But lots of estimators are unbiased. For example, say our
estimator is X1, then E(X1) = µ. This doesn’t sound right. What else should we be
looking for?

When choosing between two unbiased estimators θ̂1 and θ̂2, we prefer the lower vari-
ance estimator. We say the lower variance estimator is more efficient.

3 Confidence Intervals

Since the sample mean is a random variable, we cannot expect it to be exactly equal
to the true population mean in any particular sample. However, if we have a large
and random sample, we can use the sample mean as an estimate of the population
mean with some degree of confidence. The sample variance measures how much the
sample mean deviates from the population mean on average. Confidence intervals are
another way to summarize this uncertainty by providing a range of values that contains
the population mean with a certain probability.

3
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Essentially our goal is to create an interval around the sample mean that gives us a
range of plausible values for the population mean. We can have confidence intervals
of varying levels of confidence, most common are 90%, 95%, or 99%. The level of
confidence is the probability that a calculated confidence interval contains the true
population parameter.

Say we are interested in creating a 95% confidence interval for the true population
mean. If we can conclude that X̄ ∼ N(µ,σ2

X̄
) , then

Z =
X̄ − µ
σ2

X̄

=
X̄ − µ
σ2/

√
n
∼ N(0,1)

Note that from the formula for the variance of the sample mean σ2
X̄
= σ2/

√
n.

From the standard normal table we can see that Pr(−1.96 < Z < 1.96) = 0.95. This
implies that

P
"
µ − 1.96 · σ

2
√

n
< X̄ < µ + 1.96 · σ

2
√

n

#
= 0.95

The above implies that the sample mean X̄ is within 1.96 standard deviations of the
population mean µ with a 95% probability. We can now push this reasoning further
and say that in that case, it must be that the population mean µ is within 1.96 standard
deviations of any realization of the sample mean X̄ with a 95% probability. In other
words, if we observe a sample mean x̄, then there is a 95% chance that the population
mean µ is within 1.96 standard deviations of X̄ . This gives us a way to construct a 95%
confidence interval for µ based on x̄ as follows:

x̄ ± 1.96 · σ√
n

Confidence Interval: Known Population Variance

Let zα/2 be the z-value that leaves area α/2 in the upper tail of the normal dis-
tribution. Then 1 − α confidence interval is given by

x̄ ± zα/2
σ
√

n$!!%&!!'
Margin of Error
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The margin of error is influenced by two main factors: the standard deviation of the
sample mean, which in turn is affected by both the population standard deviation and
the sample size, and the level of confidence. As the level of confidence increases, the
margin of error also increases, resulting in a wider interval. If greater confidence is
desired, awider range of valuesmust be considered. Additionally, if the sample variance
is higher, there is more uncertainty, which leads to a wider interval.

Unknown Population Variance

Until now, we have made the assumption that the population variance is known, but
this is often not the case in practice. However, we can rely on the sample variance
as an unbiased estimator for the population variance. As a result, we can no longer
construct the Z statistic, but we can use the T statistic instead, which is essentially
the same as the Z statistic, but utilizes the sample standard deviation instead of the
population standard deviation. This T statistic is defined as:

T =
X̄ − µ
S/
√

n
∼ tn−1

It has been shown that this statistic follows a t distribution with n − 1 degrees of free-
dom. The t-distribution is similar to the normal distribution, but it has thicker tails to
account for the greater uncertainty in smaller sample sizes. In larger sample sizes, the
t-distribution can be approximated by the standard-normal distribution.

To construct a confidence interval using the T statistic, we can use the same approach
as before, but we now need to use the critical value for the t-distribution, denoted as
tα/2,n−1.

Confidence Interval: Unknown Population Variance

Let tα/2,n−1 be the t-value that leaves area α/2 in the upper tail of the t-distribution
with n − 1 degrees of freedom. Then 1 − α confidence interval is given by

x̄ ± tα/2,n−1
S
√

n

However, if the sample size is larger than or equal to 100, the t-distribution can be
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approximated by the standard-normal distribution. In this case, we can continue to use
the standard-normal table for the critical values.

4 Hypothesis Testing

So far, we have discussed that when we use a sample to make inferences about the
population, the sample statistic is not necessarily equal to the population parameter.
However, we might be interested in knowing how plausible it is that the population
parameter takes a particular value given our realization of the sample mean. To do this,
we can formally test the hypothesis that the population parameter takes a particular
value.

Say, we are interested in determining whether the population mean µ is equal to a par-
ticular value µ0. We found a sample mean of x̄. We can formally test our hypothesis
µ = µ0 by following a set of steps. However, before we proceed, we need to choose
a significance level. The significance level is the probability of rejecting the null hy-
pothesis when it is actually true. Common significance levels are 0.01, 0.05, or 0.1,
which correspond to a 1%, 5%, or 10% chance of rejecting the null hypothesis when it
is actually true.

The steps for testing the hypothesis µ = µ0 are as follows:

1. Formulate the null and alternative hypothesis

H0 : µ = µ0 H1 : µ ! µ0

The null hypothesis assumes that the population mean is equal to the specified
value µ0, while the alternative hypothesis assumes that it is not.

2. Determine the distribution of the test statistic under the null. If we can conclude that
the sample mean is normally distributed around the true population mean, then
under the null X̄ ∼ N(µ0,σ

2/n). This implies that under the null, and T-statistic
is distributed according to tn−1 (or the Z statistic is distributed according to the
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standard normal distribution).

T =
X̄ − µ0

S/
√

n
∼ tn−1

3. Determine the rejection region. We reject the null hypothesis when the calculated
test statistic falls in the α% most extreme outcomes of its distribution. This is
because we started by assuming the null hypothesis to be true, and if we find a
value that is too far in the tails, it suggests that the null hypothesis is unlikely to
be true. Thus, we reject the null hypothesis in favor of the alternative hypothesis.

4. Calculate the test statistic (T or Z depending on if you know the population vari-
ance or not) and reject or fail to reject the null.

t =
x̄ − µ0

S/
√

n

If the test statistic falls in the rejection region, we reject the null hypothesis in fa-
vor of the alternative hypothesis. So reject the null if |t | > tn−1,α/2 where tn−1,α/2

is the critical value of the t-distribution with n−1 degrees of freedom at a signif-
icance level of α.

p-value

In hypothesis testing, the p-value is the probability of observing a test statistic as ex-
treme or more extreme than the one calculated from the sample data, assuming the
null hypothesis is true. We can calculate it by finding the area in the tails of the dis-
tribution beyond the absolute value of the observed test statistic and doubling it. In
particular,

p = 2Pr(T ≥ |t | |H0 : µ = µ0)

To put it simply, the p-value measures the strength of evidence against the null hy-
pothesis. A small p-value indicates that the observed data is unlikely to have occurred
by chance alone, and provides evidence in favor of the alternative hypothesis. On the
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other hand, a large p-value suggests that the observed data could have occurred by
chance, and there is not enough evidence to reject the null hypothesis.

We can use the significance level α and p-value to make a decision about whether to
reject or fail to reject the null hypothesis. In particular, if the p-value is smaller than
the significance level, we reject the null hypothesis, and if the p-value is greater than
or equal to the significance level, we fail to reject the null hypothesis.

It is important to note that the p-value does not give any information about the size of
the effect or the practical significance of the result. It only provides information on the
statistical significance of the result.

Additional Derivations

The expectation of the sample mean can be derived as follows:

E(X̄) = E

(
1
n

n!
i=1

Xi

)

=
1
n

E

(
n!

i=1
Xi

)

=
1
n

n!
i=1

E(Xi)

=
1
n

nµ = µ

The variance of the sample mean can be derived as follows:

Var(X̄) = Var

(
1
n

n!
i=1

Xi

)

=
1
n2

n!
i=1

Var(Xi)

=
1
n2 nσ2

=
σ2

n
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Example: Blood Pressure in Massachusetts

We picked a random sample of 100 people from Massachusetts and took their blood
pressure. The average diastolic blood pressure in our sample was 75. We don’t know
the true underlying population mean and want to use our sample estimate to make
inferences about it. For now assume that even though we don’t know the population
mean, we do know that the population variance is σ2 = 552.25.

In addition, we know that E(X̄) = µ and Var(X̄) = σ2

n . In this example:

Var(X̄) = 552.25
100

= 5.52

and the standard deviation of X̄ , σX̄ =
σ√
n
= 23.5

10 = 2.35.

The sample mean is useful but not so much without its standard deviation. Every time
we pick a random sample, it is one out of many samples we could have picked. In
which case, the sample mean of 75 we got above is one of the many sample means we
could have got. We know that despite this sampling variation, the sample mean is an
unbiased estimator of µ. So we could get numbers larger or smaller than the true µ but
on average, they will cancel out.

The standard deviation tells us how much further from µ our realizations could be. In
other words, the standard deviation tells us how good or precise our estimate is. The
standard deviation of the sample mean is lower if the underlying population is more
similar (lower σ) or if we have a larger sample size (higher n) since both of these reduce
the scope of sampling variation affecting our estimate.

Going a step further, if we know the distribution of the sample mean, we can attach
probabilities to certain intervals of outcomes. In our example, since n ≥ 100 we can
invoke the Central Limit Theorem (CLT) and conclude that X̄ is normally distributed.
So,

X̄ ∼ N(µ,5.52)
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Knowing the distribution of the sample mean helps us calculate areas under the curve
that correspond to probabilities of outcomes in certain intervals.

90% Confidence Interval

Say we are interested in constructing a 90% confidence interval (CI) around the mean.
A 1 − α CI is given by

X̄ ± zα/2
σ

n

where zα/2 leaves area α/2 in the upper tail of the normal distribution. Here 1 − α =
0.90, so α = 0.10. We need to find z0.5 which is equal to 1.645 (from the standard
normal table). So our 90% CI in this example is given by

75 ± 1.645 × 2.35

Interpretation: We are 90% confident that the true mean diastolic blood pressure in
Massachusetts is between 71.13 and 78.86. Although the true mean may or may not
be in this interval, 90% of intervals formed in this manner will contain the true mean.

A 95% CI would be wider as the margin of error has to be larger when we want to be
95% confident vs 90% confident. The margin of error will also be larger if the standard
deviation of the sample mean is larger.
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Example: Blood Pressure in Massachusetts (Continued.)

We picked a random sample of 100 people from Massachusetts and took their blood
pressure. The average diastolic blood pressure in our sample was 75. We think that
the true average blood pressure in the population should have been 78. We would like
to test this hypothesis formally.

Hypothesis Testing: Two-Tailed Test

Step 1: State the null hypothesis and the alternative hypothesis.

H0 : µ = 78 H1 : µ ! 78

This will imply a two-tailed hypothesis test as values far above and far below 78 will
cause us to reject the null hypothesis.

Step 2: Find the distribution of the test statistic under the null.

Here we have n ≥ 100, so by CLT we know that X̄ is normally distributed. In addition,
we are assuming we know that the population variance is σ2 = 552.25. So we can
calculate the variance of the sample mean σ2

X̄
= σ

2

n =
552.25

100 = 5.52 Under the null
X̄ ∼ N(78,5.52). So test statistic constructed as follows

Z =
X̄ − µ0
σX̄

is distributed normal with mean 0 and variance 1 i.e. Z ∼ N(0,1).

Step 3: Determine the rejection region.

At 10% level of significance, we find the 5% of outcomes that are furthest above and
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5% of outcomes that are furthest below zero.

zα/2 = z0.05 = 1.64

We reject the null if our test statistic z > 1.64 or if z < −1.64.

Step 4: Find the test statistic and decide whether to reject the null.

z =
75 − 78

2.35
= −1.28

As −1.64 < −1.28 < 1.64, we do not reject the null. This automatically implies that
we would not have rejected this null at 1% or 5% either.

P-Value

What is the p-value associated with our test statistic? In other words, what is the prob-
ability that we would randomly select a sample mean that is 1.28 standard deviations
or more away from the (hypothesized) population mean?

p = 2P(Z > |z | |H0 : µ = 78) = 2P(Z > 1.28) = 2 × 0.10 = 0.20

You should recognize that this is really Pr(Z > 1.28) + Pr(Z < −1.28). Due to the
symmetry properties of the Normal distribution, this is the same as 2P(Z > 1.28).

The p-value implies that our test statistic is (just barely) in the 20% percent of most
surprising outcomes given that our null hypothesis is true. It is not in the 10% percent
of outcomes that are most surprising if the null is true. Therefore, our null cannot be
rejected at a 10% significance level. Put another way, the probability of being at least
1.28 standard deviations away from the mean is approximately 20% and thus higher
than the 10% significance level.
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One-Tailed Test

This topic was not included in our classroom instruction and is not necessary for the exam.
The information is simply provided for your personal interest.

Now
H0 : µ > 78 H1 : µ ≤ 78

The only thing that changes in this case from when we were doing a two-tailed test
is the rejection region. Test statistic outcomes far above 0 would be surprising, but
obtaining a sample mean many standard deviations above 78 would not cause us to
reject this null hypothesis. This implies a one-tailed test.

As we are using a 10% significance level, we find the 10% of outcomes that are furthest
below zero. Our critical value here is zα = z0.10 = −1.28, which tells us the cutoff
for leaving 10 percent probability on the negative side tail. We will reject our null
hypothesis if z < −1.28. Here z = −1.28, so we fail to reject the null.

Note: In the one-tailed test we did here, any µ0 < 75 would automatically never be
rejected. (Finding an average of 75 does not make me reject the idea that the average
is greater than 70)
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