
Multiple Linear Regression
ECON 340: Economic Research Methods Instructor: Div Bhagia

Multiple linear regression attempts to model the relationship between two or more
explanatory variables and a dependent variable by fitting a linear equation on the ob-
served data. Let’s think about a case with two explanatory variables X1 and X2:

Ŷi = β̂0 + β̂1X1i + β̂2X2i + ûi

To estimate the values of β̂0, β̂1, and β̂2 using ordinary least squares, we minimize the
sum of squared residuals, just as we do in simple regression.

1 Adjusted R2

We can also define three sums of squares — total, explained, and residual — and calcu-
late the R-squared value, which represents the percentage of variation in the depen-
dent variable that can be explained by using X1 and X2 to predict it for each observation
in the sample.

Total Sum of Squares:

TSS =
n!

i=1
(Yi − Ȳ )2

Explained Sum of Squares:

ESS =
n!

i=1
(Ŷi − Ȳ )2

Residual Sum of Squares:

RSS =
n!

i=1
(Yi − Ŷi)2
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R-squared as before is defined as:

R2 =
ESS
TSS

= 1 − RSS
TSS

It is important to note that the R2 of a regression model never decreases when an
additional explanatory variable is added, no matter how irrelevant that variable may
be. This means that the R2 of an expanded regression model will always be equal to or
greater than that of the original regression model. Therefore, we should not rely solely
on a high R2 value when evaluating a model with a long list of explanatory variables,
as the value may be arbitrarily increased by adding even unimportant variables.

To address this issue and compare alternative models with different numbers of ex-
planatory variables, we can use an alternative measure called Adjusted R2, which takes
into account the number of variables used in the model. This measure is calculated as
follows:

AdjustedR2 = 1 − RSS/(n − k − 1)
TSS/(n − 1)

where k is the number of variables. The numerator and denominator of R2 are divided
by their respective degrees of freedom to calculate Adjusted R2. The denominator,
which represents the total sum of squares, remains constant for a given dependent
variable. However, the numerator, which represents the residual sum of squares, de-
creases as k is increased. If the residual sumof squares decreases by a larger percentage
than the degrees of freedom when adding a variable, then the Adjusted R2 value will
increase, and vice versa. This allows us to compare models with different numbers of
explanatory variables more accurately.

2 Interpretation of the Coefficients

However, now the interpretation of the coefficients changes slightly. Let’s keep think-
ing about the case with two explanatory variables X1 and X2.

Ŷi = β̂0 + β̂1X1i + β̂2X2i + ûi
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In this scenario, β̂0 corresponds to the predicted value of Y when both X1 and X2 are
set to 0. On the other hand, β̂1 denotes the impact of a 1-unit increase in X1, assuming
that X2 remains constant. This is commonly expressed as “holding all other variables
constant” or “ceteris paribus.”

3 Assumptions for Causal Inference

There are five assumptions for causal inference in the multiple regression model. The
first four are the same as the single-regressor model.

1. The population regressionmodel is linear in its parameters and correctly specified
as:

Yi = β0 + β1X1i + β2X2i + . . . + βk Xki + ui

2. The observed data (Yi, X1i, X2i, . . . , Xki) for i = 1,2, . . . , n represent a random sam-
ple of size n from the above population model.

3. Large outliers are unlikely: X1i, X2i, . . . , Xki have finite fourth moments.

4. ui has conditional mean 0 given X1i, X2i, . . . , Xki

E(ui |X1i, X2i, . . . , Xki) = 0

5. There is no perfect multicollinearity.

If assumptions 1-5 hold, then in large sample β̂ j ∼ N(β j,σ
2
β̂j
). Hence, we can test

hypotheses and construct confidence intervals for our estimates as before.

The last assumption requires that the regressors (independent variables) do not exhibit
perfect multicollinearity. The regressors are said to exhibit perfect multicollinearity
(or to be perfectly multicollinear) if one of the variables is a perfect linear function
of the others. At an intuitive level, perfect multicollinearity is a problem because you
are asking the regression to answer an illogical question. In multiple regression, the
coefficient on one of the regressors is the effect of a change in that regressor, holding
the other regressors constant. Now, if the other regressor is a linear function of the
first regressor, OLS cannot estimate this nonsensical partial effect.
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Interpretation of coefficients: The coefficient βk measures the effect of a one-unit change
in Xk , while holding all other variables constant. To see this, let’s consider a two-variable
model:

Y = β0 + β1X1 + β2X2 + u

To interpret the coefficient on X1, we can take the expectation of Y conditional on
X1 = x1 and X2 = x2, and note that the conditional expectation of the error term u is
zero. This gives us:

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 (1)

Now, let’s consider the effect of a one-unit change in X1, while holding X2 constant at
x2. We can take the conditional expectation of Y again, this time with X1 = x1 + 1:

E(Y |X1 = x1 + 1, X2 = x2) = β0 + β1(x1 + 1) + β2x2 (2)

By subtracting equation (1) from (2), we obtain:

E(Y |X1 = x1 + 1, X2 = x2) − E(Y |X1 = x1, X2 = x2) = β1

Thus, we see that β1 represents the effect of a one-unit increase in X1, holding X2

constant.

Similarly, we can take the conditional expectation of Y with X2 = x2 + 1 and X1 = x1,
and subtract it from equation (1) to obtain:

E(Y |X1 = x1, X2 = x2 + 1) − E(Y |X1 = x1, X2 = x2) = β2

This shows that β2 represents the effect of a one-unit increase in X2, holding X1 con-
stant.

4 Control Variables

While there are cases where we might want to evaluate the effect of more than one
variable, it is hard to find exogenous variables. A useful application of the multiple
regression model is to control for the omitted variables while aiming to estimate the
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causal effect of our variable of interest.

Consider the following multiple regression model with two independent variables:

Y = β0 + β1X + β2W + u

In this model, X is our primary variable of interest. However, W is not only correlated
with X but also influences Y . Ignoring W would result in a biased OLS estimator for
β1. According to the assumptions discussed earlier, as long as both W and X are jointly
exogenous—meaning E(u|W, X) = 0—we can interpret β1 as the causal impact of X

while holding W constant and interpret β2 as the causal impact of W while holding X

constant.

However, W may not always satisfy the exogeneity condition. The good news is that it
doesn’t necessarily have to. Instead of adhering to Assumption (4), we can invoke the
"conditional mean independence" assumption:

E(u|X,W) = E(u|W)

This implies that the error term u becomes independent of X once we control for W .

Replacing assumption (4) with conditional independence, β1 can be interpreted as the
causal effect of X on Y , while controlling for W . Note that β2 may still be subject to
bias.
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