
Sampling and Estimation
ECON 340: Economic Research Methods Instructor: Div Bhagia

We often want to make inferences about a population. But a lot of times, it is only
possible to collect data from some individuals in the population. Therefore, we collect
data from a smaller subset of the population, called a sample. However, the sample
must be selected carefully to ensure that the inferences we make from the sample
accurately reflect the characteristics of the population.

One way to achieve a representative sample is through the use of random sampling.
In a random sample, each individual in the population has an equal chance of being
selected for the sample. This helps reduce bias that could be introduced if individuals
were chosen based on specific characteristics.

Sample statistics, such as the sample mean or sample standard deviation, are quantities
calculated from a sample of data. Because the sample is only a subset of the entire
population, sample statistics vary from sample to sample. This variability means that
sample statistics are random variables.

To see why sample statistics are random variables, consider the sample mean as an
example. Supposewe takemultiple random samples of the same size from a population
and calculate the mean for each sample. We expect these sample means to vary from
sample to sample due to the variability inherent in the sampling process. Thus, the
sample mean is a random variable since it can take on different values depending on
the sample that is selected.

1 Distribution of Sample Mean

Let X1, X2, ..., Xn denote independent randomdraws (random sample) from a population
with mean µ and variance σ2. We can calculate the sample mean as follows:

X̄ =
1
n

n!
i=1

Xi
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We can show that the expectation and the variance of the sample mean are given by1:

E(X̄) = µ Var(X̄) = σ
2

n

The expected value of the sample mean is equal to the population mean, which means
that if we were to take an infinite number of random samples and calculate the mean
of each sample, the average of these sample means would be equal to the population
mean.

The variance of the sample mean refers to the amount of variability or spread that we
would expect to see in the sample means that we would obtain if we were to take
multiple random samples from a population.

The variance of the sample mean is equal to the population variance divided by the
sample size. From this formula, we can see that when sample size increases, the vari-
ance of the sample mean decreases, and the sample mean becomes a more precise
estimator of the population mean. This is because by increasing the sample size, we
can reduce the effects of random variation and sampling error.

On the other hand, variance of the sample mean increases with the variance of the
population. This means that when we take repeated random samples of a fixed size
from a highly variable population, we are likely to observemore variability in the sample
means from sample to sample.

The distribution of the sample mean is normal if either of the following is true:

• The underlying population is normal
• The sample size is large, say n ≥ 100

The first one follows from the sample mean being a linear combination of normally
distributed variables. The latter is implied by the Central Limit Theorem.

1Derivations at the end.
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Central Limit Theorem

Central Limit Theorem (CLT) states that if X1, X2, .., Xn are drawn randomly from a pop-
ulation with mean µ and variance σ2, sample mean X̄ is normally distributed with mean
µ and variance σ2/n as long as n is large.

X̄ ∼ N(µ,σ2/n)

In other words, CLT states that as we increase the sample size, the distribution of the
sample means tends to approximate a normal distribution, regardless of the underlying
distribution of the population.

2 Estimators

An estimator θ̂ for the population parameter θ is said to be unbiased if

E(θ̂) = θ

Examples: X̄ for µ, s2 for σ2 But lots of estimators are unbiased. For example, say our
estimator is X1, then E(X1) = µ. This doesn’t sound right. What else should we be
looking for?

When choosing between two unbiased estimators θ̂1 and θ̂2, we prefer the lower vari-
ance estimator. We say the lower variance estimator is more efficient.

3 Confidence Intervals

Since the sample mean is a random variable, we cannot expect it to be exactly equal
to the true population mean in any particular sample. However, if we have a large
and random sample, we can use the sample mean as an estimate of the population
mean with some degree of confidence. The sample variance measures how much the
sample mean deviates from the population mean on average. Confidence intervals are
another way to summarize this uncertainty by providing a range of values that contains
the population mean with a certain probability.
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Essentially our goal is to create an interval around the sample mean that gives us a
range of plausible values for the population mean. We can have confidence intervals
of varying levels of confidence, most common are 90%, 95%, or 99%. The level of
confidence is the probability that a calculated confidence interval contains the true
population parameter.

Say we are interested in creating a 95% confidence interval for the true population
mean. If we can conclude that X̄ ∼ N(µ,σ2

X̄
) , then

Z =
X̄ − µ
σ2

X̄

=
X̄ − µ
σ2/

√
n
∼ N(0,1)

Note that from the formula for the variance of the sample mean σ2
X̄
= σ2/

√
n.

From the standard normal table we can see that Pr(−1.96 < Z < 1.96) = 0.95. This
implies that

P
"
µ − 1.96 · σ

2
√

n
< X̄ < µ + 1.96 · σ

2
√

n

#
= 0.95

The above implies that the sample mean X̄ is within 1.96 standard deviations of the
population mean µ with a 95% probability. We can now push this reasoning further
and say that in that case, it must be that the population mean µ is within 1.96 standard
deviations of any realization of the sample mean X̄ with a 95% probability. In other
words, if we observe a sample mean x̄, then there is a 95% chance that the population
mean µ is within 1.96 standard deviations of X̄ . This gives us a way to construct a 95%
confidence interval for µ based on x̄ as follows:

x̄ ± 1.96 · σ√
n

Confidence Interval: Known Population Variance

Let zα/2 be the z-value that leaves area α/2 in the upper tail of the normal dis-
tribution. Then 1 − α confidence interval is given by

x̄ ± zα/2
σ
√

n$!!%&!!'
Margin of Error
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The margin of error is influenced by two main factors: the standard deviation of the
sample mean, which in turn is affected by both the population standard deviation and
the sample size, and the level of confidence. As the level of confidence increases, the
margin of error also increases, resulting in a wider interval. If greater confidence is
desired, awider range of valuesmust be considered. Additionally, if the sample variance
is higher, there is more uncertainty, which leads to a wider interval.

Unknown Population Variance

Until now, we have made the assumption that the population variance is known, but
this is often not the case in practice. However, we can rely on the sample variance
as an unbiased estimator for the population variance. As a result, we can no longer
construct the Z statistic, but we can use the T statistic instead, which is essentially
the same as the Z statistic, but utilizes the sample standard deviation instead of the
population standard deviation. This T statistic is defined as:

T =
X̄ − µ
S/
√

n
∼ tn−1

It has been shown that this statistic follows a t distribution with n − 1 degrees of free-
dom. The t-distribution is similar to the normal distribution, but it has thicker tails to
account for the greater uncertainty in smaller sample sizes. In larger sample sizes, the
t-distribution can be approximated by the standard-normal distribution.

To construct a confidence interval using the T statistic, we can use the same approach
as before, but we now need to use the critical value for the t-distribution, denoted as
tα/2,n−1.

Confidence Interval: Unknown Population Variance

Let tα/2,n−1 be the t-value that leaves area α/2 in the upper tail of the t-distribution
with n − 1 degrees of freedom. Then 1 − α confidence interval is given by

x̄ ± tα/2,n−1
S
√

n

However, if the sample size is larger than or equal to 100, the t-distribution can be
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approximated by the standard-normal distribution. In this case, we can continue to use
the standard-normal table for the critical values.

4 Hypothesis Testing

So far, we have discussed that when we use a sample to make inferences about the
population, the sample statistic is not necessarily equal to the population parameter.
However, we might be interested in knowing how plausible it is that the population
parameter takes a particular value given our realization of the sample mean. To do this,
we can formally test the hypothesis that the population parameter takes a particular
value.

Say, we are interested in determining whether the population mean µ is equal to a par-
ticular value µ0. We found a sample mean of x̄. We can formally test our hypothesis
µ = µ0 by following a set of steps. However, before we proceed, we need to choose
a significance level. The significance level is the probability of rejecting the null hy-
pothesis when it is actually true. Common significance levels are 0.01, 0.05, or 0.1,
which correspond to a 1%, 5%, or 10% chance of rejecting the null hypothesis when it
is actually true.

The steps for testing the hypothesis µ = µ0 are as follows:

1. Formulate the null and alternative hypothesis

H0 : µ = µ0 H1 : µ ! µ0

The null hypothesis assumes that the population mean is equal to the specified
value µ0, while the alternative hypothesis assumes that it is not.

2. Determine the distribution of the test statistic under the null. If we can conclude that
the sample mean is normally distributed around the true population mean, then
under the null X̄ ∼ N(µ0,σ

2/n). This implies that under the null, and T-statistic
is distributed according to tn−1 (or the Z statistic is distributed according to the
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standard normal distribution).

T =
X̄ − µ0

S/
√

n
∼ tn−1

3. Determine the rejection region. We reject the null hypothesis when the calculated
test statistic falls in the α% most extreme outcomes of its distribution. This is
because we started by assuming the null hypothesis to be true, and if we find a
value that is too far in the tails, it suggests that the null hypothesis is unlikely to
be true. Thus, we reject the null hypothesis in favor of the alternative hypothesis.

4. Calculate the test statistic (T or Z depending on if you know the population vari-
ance or not) and reject or fail to reject the null.

t =
x̄ − µ0

S/
√

n

If the test statistic falls in the rejection region, we reject the null hypothesis in fa-
vor of the alternative hypothesis. So reject the null if |t | > tn−1,α/2 where tn−1,α/2

is the critical value of the t-distribution with n−1 degrees of freedom at a signif-
icance level of α.

p-value

In hypothesis testing, the p-value is the probability of observing a test statistic as ex-
treme or more extreme than the one calculated from the sample data, assuming the
null hypothesis is true. We can calculate it by finding the area in the tails of the dis-
tribution beyond the absolute value of the observed test statistic and doubling it. In
particular,

p = 2Pr(T ≥ |t | |H0 : µ = µ0)

To put it simply, the p-value measures the strength of evidence against the null hy-
pothesis. A small p-value indicates that the observed data is unlikely to have occurred
by chance alone, and provides evidence in favor of the alternative hypothesis. On the
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other hand, a large p-value suggests that the observed data could have occurred by
chance, and there is not enough evidence to reject the null hypothesis.

We can use the significance level α and p-value to make a decision about whether to
reject or fail to reject the null hypothesis. In particular, if the p-value is smaller than
the significance level, we reject the null hypothesis, and if the p-value is greater than
or equal to the significance level, we fail to reject the null hypothesis.

It is important to note that the p-value does not give any information about the size of
the effect or the practical significance of the result. It only provides information on the
statistical significance of the result.

Additional Derivations

The expectation of the sample mean can be derived as follows:

E(X̄) = E

(
1
n

n!
i=1

Xi

)

=
1
n

E

(
n!

i=1
Xi

)

=
1
n

n!
i=1

E(Xi)

=
1
n

nµ = µ

The variance of the sample mean can be derived as follows:

Var(X̄) = Var

(
1
n

n!
i=1

Xi

)

=
1
n2

n!
i=1

Var(Xi)

=
1
n2 nσ2

=
σ2

n
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