
Random Variables
ECON 340: Economic Research Methods Instructor: Div Bhagia

1 Single Random Variable

A random variable is a variable that takes different values under different scenarios.
The likelihood of these different scenarios is summarized by the distribution of the
random variable. We will denote a random variable by X and realizations of it by x.

Random variables can either be discrete or continuous. A discrete random variable has
a countable number of possible values. While continuous random variables can take
any value in a given interval.

1.1 Discrete Random Variables

The probability distribution function (PDF) for a discrete random variable X is given by:

f (x) = Pr(X = x)

where 0 ≤ f (x) ≤ 1 for all x and
∑

x f (x) = 1.

The cumulative distribution function (CDF) for a discrete random variable X is given by:

F(x0) = Pr(X ≤ x0) =
∑
x≤x0

f (x)

Example. X is the outcome of rolling a die.

x f (x) F(x)

1 1/6 1/6
2 1/6 2/6
3 1/6 3/6
4 1/6 4/6
5 1/6 5/6
6 1/6 1
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Figure 1: Outcome from a Die Roll

(a) Probability Distribution Function (b) Cumulative Distribution Function

Bernoulli Random Variable is a special type of discrete random variable that only takes
two values 1 and 0. It is also called a binary variable.

X =



1 with probability p

0 with probability 1 − p

1.2 Continuous Random Variables

Because of continuum of possible values, it is not feasible to list the probability of each
possible value of a continuous random variable. So we instead have the probability
density function (PDF), denoted by f (x). The area under the curve f (x) gives us the
probability of X falling in certain intervals. The probability density function is defined as:

Pr(a ≤ x ≤ b) =
∫ b

a
f (x)∂x

where f (x) > 0 for all x and
∫ ∞
−∞ f (x)∂x = 1.

Note that for continuous random variables, Pr(X = x) = 0. This is just to say that it
is very very unlikely that any particular value will be realized because there are infinite
possibilities.

The integral
∫ b

a is the continuous analog of the sum. You don’t need to know how to
solve an integral, but remember it is like taking a sum over continuous values. The limits
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of the integral, a and b, define the interval over which we are taking this sum.

The cumulative density function (CDF) for a continuous random variable X is given by:

F(x0) = Pr(X ≤ x0) =
∫ x0

−∞
f (x)∂x

Note that, Pr(a ≤ x ≤ b) = F(b) − F(a).

Example. Let’s say the distribution for the height of individuals in the world is given by
the following probability density function:

Weneed to find the corresponding area under the curve to find the probability of height
being in particular intervals.

(a) Pr(150 < X < 175) (b) Pr(X < 150)

The CDF corresponding to the above PDF looks like:
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1.3 Expectation and Variance of Random Variables

The expectation or expected value or the mean of a random variable gives us the aver-
age value of this variable over many repeated trials or occurrences. We can compute
the expectation as a weighted average of possible outcomes, where the weights are
probabilities.

The expectation of a discrete random variable is given by:

µX = E(X) =
∑

x

x f (x)

The expected value for a continuous random variable is given by:

µX = E(X) =
∫

x
x f (x)∂x

The variance measures the dispersion or the “spread” of a probability distribution. The
variance for a random variable is given by:

σ2
X = Var(X) = E[(X − µX)2]

In other words, variance is the expected value of the square of deviations of X from its
mean.
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Using the definition of expectation for a discrete random variable, we can write:

σ2
X = Var(X) = E[(X − µX)2] =

∑
x

(x − µX)2 f (x)

Alternative formula for the variance: Var(X) = E[(X − µX)2] = E(X2) − µ2
X .

Variance is in units of the square of X . Therefore we use standard deviation, which is
the square-root of variance:

σX =

√
σ2

X

Example. We can calculate the expected value and variance for the outcome of rolling
a die as follows:

x f (x) x f (x) (x − µX)2 f (x)

1 1/6 1/6 (-2.5)2/6
2 1/6 2/6 (-1.5)2/6
3 1/6 3/6 (-0.5)2/6
4 1/6 4/6 (0.5)2/6
5 1/6 5/6 (1.5)2/6
6 1/6 6/6 (2.5)2/6

Total - 21/6 17.5/6

µX = E(X) =
∑

x

x f (x) = 21
6
= 3.5

Var(X) =
∑

x

(x − µX)2 f (x) = 17.5
6

Example. The expected value and variance for a binary random variable that takes value
1 with probability p and 0 with probability 1 − p is given by:

µX = E(X) =
∑

x

x f (x) = 1.p + 0.(1 − p) = p

Var(X) =
∑

x

(x − µX)2 f (x) = (1 − p)2.p + (0 − p)2.(1 − p) = p(1 − p)
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Using the alternative formula for variance:

Var(X) = E(X2) − µ2
X = 12.p + 02.(1 − p) − µ2

X = p − p2 = p(1 − p)

2 Normal and Standard Normal Distribution

2.1 Normal Distribution

There are lots and lots of probability distributions that are used for modeling different
variables. For example, uniform distribution is a distribution with constant probability.
There are many more, Bernoulli, binomial, gamma, beta, Poisson, and so on.

However, one distribution that appears over and over again is the normal distribution.
The distribution of a lot of things like height, birthweight, IQ, etc. is normal. The normal
distribution is symmetric (i.e., the left and right tails are the same sizes and there’s no
skew). For this reason, sometimes it is informally referred to as a bell curve. We express
normal distribution with mean µ and variance σ2 as follows:

N(µ,σ2)

Figure 2 presents normal distributions with different means and variances.

The distribution of height that we saw in the above example was a normal distribu-
tion with a mean of 169 and a variance of 225. In which case, we can write height ∼
N(169,225), which is short-form for saying height is normally distributed with mean
169 and variance 225.

2.2 Standard Normal Distribution

The normal distribution with mean 0 and variance 1 is called the standard normal dis-
tribution and is denoted by N(0,1). Random variables that have a N(0,1) distribution
are often denoted by Z .

In fact, we can standardize any normally distributed variable into a standard normal

6



ECON 340: Economic Research Methods Div Bhagia

Figure 2: Normal distributions with different means and variances

variable by subtracting the mean of the normal variable from each value in the distribu-
tion and then dividing by the standard deviation of the distribution. Given X ∼ N(µ,σ2),
the standardized random variable is given by:

Z =
X − µ
σ

Here, Z ∼ N(0,1). To see why this is the case, note that when we standardize X , we
subtract themean µ from each value of X . This has the effect of shifting the distribution
so that its center is at 0. Next, we divide each value by the standard deviation σ. This
has the effect of scaling the distribution so that its spread equals 1.
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2.3 Finding the area under the curve

We are often interested in finding the probability that a random variable lies in a par-
ticular interval. For example, say X ∼ N(3,16), and we want to calculate Pr(X ≥ 5). As
we said before, to find this probability, we need to calculate the following area under
the curve:

−5−3−1 1 3 5 7 9 11

2
4
6
8

·10−2

X

f(
X
)

However, it can be difficult and time-consuming to calculate the area by hand. Instead,
we can standardize this variable and use the standard normal table to find this area. The
standard normal table provides the area under the standard normal distribution curve
for different values of Z .

Given X ∼ N(3,16),
Z =

X − 3
4

∼ N(0,1)

Note that,

Pr(X ≥ 5) = Pr
(

X − 3
4

≥ 5 − 3
4

)
= Pr(Z ≥ 0.5)

Wecan now refer to the standard normal table and find that Pr(Z ≥ 0.5) equals 0.3085.
The figure below presents this probability as the area under the curve standard normal
curve.

Given X ∼ N(µ,σ2), general recipe to find Pr(x0 < X < x1):

• Find z0 = (x0 − µ)/σ and z1 = (x1 − µ)/σ

• Use standard normal table to find Pr(z0 < Z < z1)
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−1.96 0 0.5 1.96

0.1

0.2

0.3
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f(

Z
)

Example. Given X ∼ N(3,16), we want to find Pr(2 < X < 5). Here x0 = 2, x1 = 5, we
can find that z0 = (2 − 3)/4 = −0.25 and z1 = (5 − 3)/4 = 0.5. Now we just need to
look at the standard normal table and find Pr(−0.25 < Z < 0.5).

Alternatively, sometimes we wish to identify the value of x for which the probability
Pr(X < x) or Pr(X > x) equals a specific value p. This can be achieved in a similar
manner by using the standard normal table. In particular, we need to find the corre-
sponding value z that satisfies Pr(Z < z) or Pr(Z > z), and then transform it back to
obtain x.

Given X ∼ N(µ,σ2) and Pr(X < x) = p, to find x :

• Use standard normal table to find z where Pr(Z < z) = p

• Find x = µ + z · σ

This follows analogously for when we are given Pr(X > x) = p.

3 Multiple Random Variables

3.1 Joint and Marginal Distribution

The joint probability distribution of two discrete random variables X and Y , is the prob-
ability that the random variables simultaneously take on certain values.

f (x, y) = Pr(X = x,Y = y)
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Example. The table below gives us the probability of possible commute times and rain
on a given day.

Rain (X = 1) No Rain (X = 0) Total

60-min commute (Y = 60) 0.3 0.2 0.5
30-min commute (Y = 30) 0.1 0.4 0.5

Total 0.4 0.6 1

The marginal probability distribution of a random variable Y is just another name for its
probability distribution. In particular,

f (y) = Pr(Y = y) =
∑

x

Pr(X = x,Y = y)

For example, the probability of having a 60-minute commute is given by the sum of
probability of having a 60-minute commute and no rain and the probability of having a
60-minute commute and rain.

Pr(Y = 60) = Pr(X = 1,Y = 60) + Pr(X = 0,Y = 60) = 0.3 + 0.2 = 0.5

3.2 Conditional Probability and Bayes Rule

The distribution of a randomvariableY conditional on another randomvariable X taking
on a specific value is called the conditional distribution of Y given X .

f (y |x) = Pr(Y = y |X = x) = Pr(X = x,Y = y)
Pr(X = x) =

f (x, y)
f (x)

For example, the probability of having a 60-minute commute conditional on rain is
given by:

Pr(Y = 60|X = 1) = Pr(X = 1,Y = 60)
Pr(X = 1) =

0.3
0.4
=

3
4

While the probability of having a 60-minute commute conditional on no rain is given
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by:
Pr(Y = 60|X = 0) = Pr(X = 0,Y = 60)

Pr(X = 0) =
0.2
0.6
=

1
3

Remember, the unconditional probability of having a 60-minute commute was given
by 0.5.

The conditional expectation of Y given X is the mean of the conditional distribution of
Y given X .

E(Y |X = x) =
∑
y

yPr(Y = y |X = x)

For the example above,

E(Y |X = 1) = 60.Pr(Y = 60|X = 1) + 30.Pr(Y = 30|X = 1) = 60 · 3
4
+ 30 · 1

4
= 52.5

Similarly,

E(Y |X = 0) = 60.Pr(Y = 60|X = 0) + 30.Pr(Y = 30|X = 0) = 60 · 1
3
+ 30 · 2

3
= 40

So by comparing E(Y |X = 1) and E(Y |X = 0), we can find out how rain affects the
average commute time.

Bayes’ rule says that the conditional probability of Y given X is the conditional proba-
bility of X given Y times the relative marginal probabilities of Y and X :

Pr(Y = y |X = x) = Pr(X = x |Y = y)Pr(Y = y)
Pr(X = x)

This is a very useful law because it says that we can deduce conditional probabilities
from the reverse conditional probability with the help of marginal probabilities.
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3.3 Law of Iterated Expectations

The mean of Y is the weighted average of the conditional expectation of Y given X ,
weighted by the probability distribution of X .

E(Y ) =
∑

x

E(Y |X = x)Pr(X = x)

More compactly,
E(Y ) = E(E(Y |X))

E.g. the mean height of adults is the weighted average of the mean height of men and
women, weighted by their proportions.

3.4 Independence and Uncorrelatedness

Two random variables X and Y are independently distributed, or independent, if know-
ing the value of one of the variables provides no information about the other. That
is,

Pr(Y = y |X = x) = Pr(Y = y)

Then by Bayes’ rule:

Pr(X = x,Y = y) = Pr(X = x)Pr(Y = y)

Example: Two consecutive coin tosses.

Note: We can equivalently say that X and Y are independent if E(Y |X) = E(Y ).

Covariance is a measure of the extent to which two random variables move together.
Let X and Y be a pair of random variables, then the covariance of X and Y is given by:

σXY = Cov(X,Y ) = E[(X − µX)(Y − µY )] = E(XY ) − µX µY

The correlation between X and Y is given by:

ρXY = corr(X,Y ) = Cov(X,Y )
σXσY

where − 1 ≤ ρ ≤ 1
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X and Y are uncorrelated if ρXY = σXY = 0 i.e. E(XY ) = E(X)E(Y ).

If X and Y are independent, then they are also uncorrelated.

E(Y |X) = E(Y ) → ρXY = 0

However, it is not necessarily true that if X and Y are uncorrelated, then they are also
independent.

4 Linear Functions of Random Variables

4.1 Linear Functions of a Single Random Variable

If X is a random variable and Y = a + bX , then Y is also a random variable with

E(Y ) = a + bE(X) Var(Y ) = b2Var(X)

In addition, a linear transformation of a random variable does not change the shape of
the distribution. So if X is normal, Y will also be normal.

Example. Let us calculate the expectation and variance for the Z score:

Z =
X − µX

σX

Note that we can write,
Z = − µX

σX
+

1
σX

· X

So a = − µXσX and b = 1
σX
, then by the above formulas:

E(Z) = a + bE(X) = − µX

σX
+

1
σX
µX = 0

Var(Z) = b2Var(X) = 1
σ2

X

· σ2
X = 1
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So if X ∼ N(µX,σ
2
X ), then Z ∼ N(0,1).

4.2 Linear Combination of Two Random Variables

X and Y is a pair of random variables, define

W = aX + bY

Then the expectation of W is given by:

E(W) = aE(X) + bE(Y )

And the variance of W is given by:

Var(W) = a2Var(X) + b2Var(Y ) + 2abCov(X,Y )

If X and Y are independent then Cov(X,Y ) = 0, so in that case Var(W) = a2Var(X) +
b2Var(Y ).

4.3 Linear Combination of Several Random Variables

For random variables, X1, X2, ..., Xn:

E(X1 + X2 + ... + Xn) = E(X1) + E(X2) + ... + E(Xn)

Var(X1 + X2 + ... + Xn) =
n∑

i=1
Var(Xi) + 2

n−1∑
i=1

K∑
j=i+1

Cov(Xi, X j)

If X1, X2, ..., Xn are independent random variables, then Var (∑i Xi) =
∑

i Var(Xi).

Note that a linear combination of several normally distributed random variables will
also be normal.
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