# ECON 340 <br> Economics Research Methods 

Div Bhagia

Midterm Review

Midterm Exam

- 1 hour 10 minutes, 20 points
- Closed book, can use a calculator
- Formula sheet and Normal Distribution table will be provided
- Study guide, formula sheet, and sample midterm is uploaded on the course website


## Topics covered

- Summation notation
- Describing Data
- Frequency distribution
- Mean, median, variance, standard deviation
- Add. topics: Percentiles, weighted mean, z-score
- Covariance and correlation
- Random variables
- Expected value and variance
- Normal and standard normal distribution
- Conditional expectation, uncorrelatedness and independence
- Sampling and Estimation
- Sample mean distribution, CLT
- Properties of a good estimator
- Confidence intervals, hypothesis tests, p-values

Mean
Sample mean:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

The population mean is denoted by $\mu$.
For grouped data:

$$
\bar{X}=\frac{1}{n} \sum_{k=1}^{J} n_{k} X_{k}=\sum_{i=1}^{J} f_{k} X_{k}
$$

Example: $X_{i}: 2,2,-4,2$

Variance
Population variance:

$$
\sigma_{X}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\mu_{X}\right)^{2}
$$

Sample variance:

$$
S_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Standard Deviation

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}} \quad S_{X}=\sqrt{S_{X}^{2}}
$$

## Variance: Grouped Data

Alternatively, population variance:

$$
\sigma_{X}^{2}=\sum_{k=1}^{J} f_{k}\left(X_{k}-\mu_{X}\right)^{2}
$$

Sample variance:

$$
S_{X}^{2}=\frac{n}{n-1} \sum_{k=1}^{J} f_{k}\left(X_{k}-\bar{X}\right)^{2}
$$

The variance of $Y$ is higher in which plot?



## Weighted Mean

Weighted mean:

$$
\bar{X}^{\omega}=\frac{\sum_{i=1}^{n} \omega_{i} X_{i}}{\sum_{i=1}^{n} \omega_{i}}
$$

where $\omega_{i}$ is the weight of the $i^{\text {th }}$ observation.
When weights sum up to 1 (i.e. $\sum_{i=1}^{n} \omega_{i}=1$ ) we can simply write the weighted mean as:

$$
\bar{X}=\sum_{i=1}^{n} \omega_{i} X_{i}
$$

## Example

- We want to estimate the average starting salary of students at a university that has only two majors
- Half of the students are Business majors, while the other half are Engineering majors
- Randomly select 100 Business students and 100 Engineering for a survey
- Response rate among Business students is $100 \%$, while it 50\% for engineering students

How can we use weighting to adjust for this?

## Covariance

$$
\begin{aligned}
\sigma_{X Y} & =\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\mu_{X}\right)\left(Y_{i}-\mu_{Y}\right) \quad \text { (Population) } \\
S_{X Y} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) \quad \text { (Sample) }
\end{aligned}
$$

Why does the formula work?

## Scatterplot



## Correlation

$$
\begin{gathered}
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} \quad \text { (Population) } \\
r_{X Y}=\frac{S_{X Y}}{S_{X} S_{Y}} \quad \text { (Sample) }
\end{gathered}
$$

Why use correlation instead of covariance?

## Correlation

- Measures the strength and direction of the linear relationship between two variables
- Bounded between -1 and 1
- If zero, there is no linear relationship. If 1 or -1 perfect linear relationship.
- If negative, when $X$ is above (below) $\bar{X}, Y$ tends to be above (below) $\bar{Y}$.
- If negative, when $X$ is above (below) $\bar{X}, Y$ tends to be below (above) $\bar{Y}$.


## Correlation is not causation!

A positive correlation between job vacancies and immigration doesn't suggest that immigration $\rightarrow$ job creation. Why?

1. Reverse causality: jobs $\rightarrow$ immigration
2. Other confounding factors: government policies $\rightarrow$ jobs, government policies $\rightarrow$ immigration

## Random Variables

A random variable is a variable that takes different values under different scenarios. Used for modeling uncertain outcomes.

Discrete RVs: Countable possible values

$$
f(x)=\operatorname{Pr}(X=x)
$$

Continuous RVs: Any value in an interval

$$
\operatorname{Pr}(a \leqslant X \leqslant b)=\int_{a}^{b} f(x) \partial x
$$

## Normal Distribution

$$
\operatorname{Pr}(X \leqslant 150)
$$

$$
\operatorname{Pr}(150<X<175)
$$




## Expectation \& Variance

Discrete RV:

$$
E(X)=\mu_{X}=\sum_{x} x f(x)
$$

Continuous RV:

$$
E(X)=\mu_{X}=\int_{x} x f(x) \partial x
$$

Variance:

$$
\operatorname{Var}(X)=\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]
$$

## Example

You estimate that the price of a stock will increase by $10 \%$ with a probability of 0.6 and decrease by $5 \%$ with a probability of 0.4. Calculate the expected return on the stock and its variance.

## Covariance and Correlation

Covariance is a measure of the extent to which two random variables move together.

Let $X$ and $Y$ be a pair of random variables, then the covariance of $X$ and $Y$ is given by:

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E(X Y)-\mu_{X} \mu_{Y}
$$

The correlation between $X$ and $Y$ is given by:

$$
\rho_{X Y}=\operatorname{corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \quad \text { where }-1 \leqslant \rho \leqslant 1
$$

## Conditional Distribution

The distribution of a random variable $Y$ conditional on another random variable $X$ taking on a specific value is called the conditional distribution of $Y$ given $X$.

$$
\operatorname{Pr}(Y=y \mid X=x)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(X=x)}
$$

Example: Q2, Problem Set 3

## Conditional Expectation

The conditional expectation of $Y$ given $X$ is the mean of the conditional distribution of $Y$ given $X$.

$$
E(Y \mid X=x)=\sum_{y} y \operatorname{Pr}(Y=y \mid X=x)
$$

## Example

$X$ : Hours spent studying each week, $Y$ : exam score
What does the following imply?

$$
E(Y \mid X)=E(Y)
$$

What if?

$$
E(Y \mid X=5)>E(Y \mid X=1)
$$

## Z-score

Z-score is defined as:

$$
Z=\frac{X-\mu}{\sigma}
$$

Z-score tells us how many standard deviations any particular observation is away from the mean.

So if $X \sim N\left(\mu, \sigma^{2} / n\right)$, what is the distribution of $Z$ ?

## Expectation and Variance of $\bar{X}$

Let $X_{1}, X_{2}, \ldots, X_{n}$ denote independent random draws (random sample) from a population with mean $\mu$ and variance $\sigma^{2}$.

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

The expectation and variance of the sample mean:

$$
E(\bar{X})=\mu \quad \operatorname{Var}(\bar{X})=\sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}
$$

## Distribution of the Sample Mean

What is the shape of the distribution for the sample mean?
It is normal when:

1. The underlying population is normal, or
2. The sample size is large, say $n \geqslant 100$, by the Central Limit Theorem

## Confidence Intervals

- If $\bar{X} \sim N\left(\mu, \sigma_{\bar{X}}^{2}\right)$, can create confidence intervals
- To create a $95 \%$ confidence interval, note:

$$
\operatorname{Pr}(-1.96<Z<1.96)=0.95
$$

- Since $Z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}$, we have

$$
\operatorname{Pr}\left(\mu-1.96 \sigma_{\bar{X}}<\bar{X}<\mu+1.96 \sigma_{\bar{X}}\right)=0.95
$$

- Which implies that:

$$
\operatorname{Pr}\left(\bar{X}-1.96 \sigma_{\bar{X}}<\mu<\bar{X}+1.96 \sigma_{\bar{X}}\right)=0.95
$$

## Confidence Intervals

Let $z_{\alpha / 2}$ be the $z$-value that leaves area $\alpha / 2$ in the upper tail of the normal distribution.

Then $1-\alpha$ confidence interval is given by

$$
\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Note that, $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

## Hypothesis Testing: Recipe

1. Set up the null and alternative hypotheses:

$$
H_{0}: \mu=\mu_{0} \quad H_{1}: \mu \neq \mu_{0}
$$

2. Calculate test statistic:

$$
z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

3. Reject the null if $|z|>z_{\alpha / 2}$

## p-Value

The p -value is defined as the probability of randomly drawing an outcome this surprising or even more surprising given the null hypothesis.

$$
p=2 P(Z>|z|)
$$

If $p$-value $<\alpha$, we reject the null.

When we don't know $\sigma^{2}$
Don't know the true population variance $\sigma^{2}$, use sample variance $S^{2}$.

The resulting test statistic:

$$
T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim t_{n-1}
$$

follows a $t$ distribution with $n-1$ degrees of freedom.
In large samples, say $n \geqslant 100, t$ is identical to standard normal so you can still refer to the standard normal table for critical values.

## Example

A university wants to test whether online classes yield similar exam scores to in-person classes. Historically, the average exam score for traditional classes has been 75. A random sample of 100 exam scores from online classes reveals an average score of 71.5 with a standard deviation of 20.

- Test the hypothesis that scores from online classes are significantly different from in-person classes at a $10 \%$ level of significance.
- What is the $p$-value associated with your hypothesis test?
- What about testing this hypothesis at a $5 \%$ level of significance?
- Create a $95 \%$ confidence interval for average score from online classes.


## Good luck!

