ECON 340 Economics Research Methods

Div Bhagia

Midterm Review

Midterm Exam

- 1 hour 10 minutes, 20 points
- Closed book, can use a calculator
- Formula sheet and Normal Distribution table will be provided
- Study guide, formula sheet, and sample midterm is uploaded on the course website

Topics covered

- Summation notation
- Describing Data
 - Frequency distribution
 - Mean, median, variance, standard deviation
 - Add. topics: Percentiles, weighted mean, z-score
 - Covariance and correlation
- Random variables
 - Expected value and variance
 - Normal and standard normal distribution
 - Conditional expectation, uncorrelatedness and independence
- Sampling and Estimation
 - Sample mean distribution, CLT
 - Properties of a good estimator
 - Confidence intervals, hypothesis tests, p-values

Mean

Sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

The population mean is denoted by μ .

For grouped data:

$$\bar{X} = \frac{1}{n} \sum_{k=1}^J n_k X_k = \sum_{i=1}^J f_k X_k$$

Example: *X_i* : 2, 2, -4, 2

Population variance:

$$\sigma_X^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \mu_X)^2$$

Sample variance:

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

Standard Deviation

$$\sigma_X = \sqrt{\sigma_X^2} \qquad S_X = \sqrt{S_X^2}$$

4/31

Variance: Grouped Data

Alternatively, population variance:

$$\sigma_X^2 = \sum_{k=1}^J f_k (X_k - \mu_X)^2$$

Sample variance:

$$S_X^2 = \frac{n}{n-1} \sum_{k=1}^J f_k (X_k - \bar{X})^2$$

The variance of *Y* is higher in which plot?

6/31

Weighted Mean

Weighted mean:

$$\bar{X}^{\omega} = \frac{\sum_{i=1}^{n} \omega_i X_i}{\sum_{i=1}^{n} \omega_i}$$

where ω_i is the weight of the *i*th observation.

When weights sum up to 1 (i.e. $\sum_{i=1}^{n} \omega_i = 1$) we can simply write the weighted mean as:

$$\bar{X} = \sum_{i=1}^{n} \omega_i X_i$$

Example

- We want to estimate the average starting salary of students at a university that has only two majors
- Half of the students are *Business* majors, while the other half are *Engineering* majors
- Randomly select 100 Business students and 100 Engineering for a survey
- Response rate among Business students is 100%, while it 50% for engineering students

How can we use weighting to adjust for this?

Covariance

$$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X) (Y_i - \mu_Y) \quad (Population)$$

$$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \quad (Sample)$$

Why does the formula work?

Scatterplot

10/31

Correlation

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \quad (Population)$$

$$r_{XY} = \frac{S_{XY}}{S_X S_Y} \quad (Sample)$$

Why use correlation instead of covariance?

Correlation

- Measures the strength and direction of the linear relationship between two variables
- Bounded between -1 and 1
- If zero, there is no linear relationship. If 1 or -1 perfect linear relationship.
- If negative, when X is above (below) X
 X

 bove (below) Y

 content of the second second
- If negative, when X is above (below) X
 , Y tends to be below (above) Y
 .

Correlation is not causation!

A positive correlation between job vacancies and immigration doesn't suggest that immigration \rightarrow job creation. Why?

- 1. Reverse causality: jobs \rightarrow immigration
- 2. Other confounding factors: government policies \rightarrow jobs, government policies \rightarrow immigration

Random Variables

A random variable is a variable that takes different values under different scenarios. Used for modeling uncertain outcomes.

Discrete RVs: Countable possible values

$$f(x) = \Pr(X = x)$$

Continuous RVs: Any value in an interval

$$Pr(a \leq X \leq b) = \int_{a}^{b} f(x) \partial x$$

Normal Distribution

15 / 31

Expectation & Variance

Discrete RV:

$$E(X) = \mu_X = \sum_x xf(x)$$

Continuous RV:

$$E(X) = \mu_X = \int_x x f(x) \partial x$$

Variance:

$$Var(X) = \sigma_X^2 = E[(X - \mu_X)^2]$$

Example

You estimate that the price of a stock will increase by 10% with a probability of 0.6 and decrease by 5% with a probability of 0.4. Calculate the expected return on the stock and its variance.

Covariance and Correlation

Covariance is a measure of the extent to which two random variables move together.

Let X and Y be a pair of random variables, then the *covariance* of X and Y is given by:

$$\sigma_{XY} = Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$

The correlation between X and Y is given by:

$$\rho_{XY} = corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} \quad \text{where } -1 \le \rho \le 1$$

18 / 31

Conditional Distribution

The distribution of a random variable Y conditional on another random variable X taking on a specific value is called the conditional distribution of Y given X.

$$Pr(Y = y | X = x) = \frac{Pr(X = x, Y = y)}{Pr(X = x)}$$

Example: Q2, Problem Set 3

Conditional Expectation

The *conditional expectation* of *Y* given *X* is the mean of the conditional distribution of *Y* given *X*.

$$E(Y|X=x) = \sum_{y} yPr(Y=y|X=x)$$

X: Hours spent studying each week, Y: exam score

What does the following imply?

E(Y|X) = E(Y)

What if?

$$E(Y|X = 5) > E(Y|X = 1)$$

Z-score is defined as:

$$Z = \frac{X - \mu}{\sigma}$$

Z-score tells us how many standard deviations any particular observation is away from the mean.

So if $X \sim N(\mu, \sigma^2/n)$, what is the distribution of *Z*?

Expectation and Variance of \bar{X}

Let $X_1, X_2, ..., X_n$ denote independent random draws (random sample) from a population with mean μ and variance σ^2 .

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

The expectation and variance of the sample mean:

$$E(\bar{X}) = \mu$$
 $Var(\bar{X}) = \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$

Distribution of the Sample Mean

What is the shape of the distribution for the sample mean?

It is normal when:

- 1. The underlying population is normal, or
- 2. The sample size is large, say $n \ge 100$, by the Central Limit Theorem

Confidence Intervals

- If $\bar{X} \sim N(\mu, \sigma_{\bar{X}}^2)$, can create confidence intervals
- To create a 95% confidence interval, note:

$$Pr(-1.96 < Z < 1.96) = 0.95$$

• Since
$$Z = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}}$$
, we have
 $Pr(\mu - 1.96\sigma_{\bar{X}} < \bar{X} < \mu + 1.96\sigma_{\bar{X}}) = 0.95$

• Which implies that:

$$Pr(ar{X} - 1.96\sigma_{ar{X}} < \mu < ar{X} + 1.96\sigma_{ar{X}}) = 0.95$$

Confidence Intervals

Let $z_{\alpha/2}$ be the *z*-value that leaves area $\alpha/2$ in the upper tail of the normal distribution.

Then $1 - \alpha$ confidence interval is given by

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Note that,
$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

Hypothesis Testing: Recipe

1. Set up the null and alternative hypotheses:

$$H_0: \mu = \mu_0$$
 $H_1: \mu \neq \mu_0$

2. Calculate test statistic:

$$z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

3. Reject the null if $|z| > z_{\alpha/2}$

p-Value

The p-value is defined as the probability of randomly drawing an outcome this surprising or even more surprising given the null hypothesis.

$$p = 2P(Z > |z|)$$

If *p*-value $< \alpha$, we reject the null.

When we don't know σ^2

Don't know the true population variance σ^2 , use sample variance S^2 .

The resulting test statistic:

$$T=rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim t_{n-1}$$

follows a *t* distribution with n-1 degrees of freedom.

In large samples, say $n \ge 100$, t is identical to standard normal so you can still refer to the standard normal table for critical values.

Example

A university wants to test whether online classes yield similar exam scores to in-person classes. Historically, the average exam score for traditional classes has been 75. A random sample of 100 exam scores from online classes reveals an average score of 71.5 with a standard deviation of 20.

- Test the hypothesis that scores from online classes are significantly different from in-person classes at a 10% level of significance.
- What is the *p*-value associated with your hypothesis test?
- What about testing this hypothesis at a 5% level of significance?
- Create a 95% confidence interval for average score from online classes.

Good luck!