ECON 340
 Economic Research Methods

Div Bhagia

Lecture 3
Variance, Standard Deviation, Z-Score

NYT Article: 2016 Election Predictions

- Summarize the main issue being discussed in the article.
- What were the three types of errors identified in the article? What is the common thread across these errors?
- One of the fixes suggested in the article was "education weighting". Which of the three errors would this fix and how?

NYT Article: 2016 Election Predictions

- Summarize the main issue being discussed in the article.
- What were the three types of errors identified in the article? What is the common thread across these errors?
- One of the fixes suggested in the article was "education weighting". Which of the three errors would this fix and how?
- In general, how can we pick a sample that is representative of the population to avoid having to reweight?

Another Example

- We want to estimate the average starting salary of students at a university that has only two majors
- Half of the students are Business majors, while the other half are Engineering majors
- Randomly select 100 Business students and 100 Engineering for a survey
- Response rate among Business students is 100%, while it 50\% for engineering students How can we use weighting to adjust for this?

Last Class

How to describe variables?

- Empirical Distribution
- Measures of central tendency: mean and median
μ : population mean, \bar{X} : sample mean

Two equivalent formulas:

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n} \quad \bar{X}=\sum_{k=1}^{K} f_{k} X_{k}
$$

Measures of central tendency are not enough!

Where would you want to live?

Mushroom Kingdom

Mean $=$ Median $=\$ 50,000$

Bowser's Kingdom

Mean $=$ Median $=\$ 50,000$
5 / 18

Deviations from the Mean

- Even with identical mean and median, the two countries are not identical.
- There is certainly more dispersion or variability in income in Bowser's Kingdom.
- More observations are further from the mean in Bowser's Kingdom.
- What could be a potential statistic that could capture this?

Deviations from the Mean

One option: average deviations from the mean. Will this work?

X_{i}	$X_{i}-\mu$
5	
5	
10	
10	
20	

Deviations from the Mean

Why does this not work? Remember from the last class:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \bar{X} \quad(\text { Why? }) \\
& =\sum_{i=1}^{n} X_{i}-n \bar{X} \\
& =n \bar{X}-n \bar{X}=0 \quad(\text { Why? })
\end{aligned}
$$

Deviations from the Mean

Why does this not work? Remember from the last class:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) & =\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \bar{X} \\
& =\sum_{i=1}^{n} X_{i}-n \bar{X} \\
& =n \bar{X}-n \bar{X}=0 \quad \text { Why?) }
\end{aligned}
$$

Can you think of a way to construct a statistic that would capture variation around the mean?

Variance and Standard Deviation

Population Variance

$$
\sigma_{X}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\mu_{x}\right)^{2}
$$

Sample Variance

$$
S_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Standard Deviation

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}} \quad S_{X}=\sqrt{S_{X}^{2}}
$$

Variance and Standard Deviation Back to our example.

X_{i}	$\left(X_{i}-\mu\right)$	$\left(X_{i}-\mu\right)^{2}$
5	-5	
5	-5	
10	0	
10	0	
20	10	
50	0	

Variance with Grouped Data

Population Variance

$$
\sigma_{X}^{2}=\sum_{k=1}^{K} f_{k}\left(X_{k}-\mu_{X}\right)^{2}
$$

Sample Variance

$$
S_{X}^{2}=\frac{n}{n-1} \sum_{k=1}^{K} f_{k}\left(X_{k}-\bar{X}\right)^{2}
$$

Variance with Grouped Data

In our example: 5, 5, 10, 10, 20. Present this as:

X_{k}	f_{k}	$f_{k} X_{k}$	$\left(X_{k}-\mu\right)^{2}$	$f_{k}\left(X_{k}-\mu\right)^{2}$
5	$2 / 5$			
10	$2 / 5$			
20	$1 / 5$			
Total				

Where would you want to live?

Mushroom Kingdom

Mean $=$ Median $=\$ 50,000$
SD $=\$ 3,000$

Bowser's Kingdom

Mean $=$ Median $=\$ 50,000$
SD $=\$ 5,000 \quad 13 / 18$

Where would you want to live?

- If we don't know where we will end up in the income distribution, some of us might prefer the Mushroom Kingdom since it is unlikely we would earn very little.
- For the same reason, some of us might like Bowser, as it is more likely that one could make a lot.
- But what if Luigi has a job for you as a plumber in both locations, and you will earn \$45,000 regardless of where you end up? Are you now indifferent between the two?

Where would you want to live?

Mushroom Kingdom

Mean $=$ Median $=\$ 50,000$
SD $=\$ 3,000$

Bowser's Kingdom

Mean $=$ Median $=\$ 50,000$
SD $=\$ 5,000 \quad 15 / 18$

Z-Score

We can calculate the Z-Score to capture how many standard deviations (σ) away from the mean (μ) a specific observation is.

$$
Z=\frac{X-\mu}{\sigma} \quad \rightarrow \quad X=\mu+Z . \sigma
$$

Example: $\sigma_{M K}=3000, \sigma_{B K}=5000$

$$
Z_{M K}=\frac{45000-50000}{3000}=-1.66 \quad Z_{B K}=\frac{45000-50000}{5000}=-1
$$

Z-Score

- Someone who earns \$45,000 in the Mushroom Kingdom is 1.66 standard deviations below the mean.
- While someone who earns $\$ 45,000$ in the Bowser's Kingdom is 1 standard deviation below the mean.
- Here, Z-score is informative about how many people are there between someone who earns \$45,000 and the average person
- More generally, Z-score tells us the relative position of an observation in the distribution

Things to do next

- Make sure you are staying up to date with the class; notes complement the slides
- Please utilize my office hours
- Coming up: Problem Set 1 (Due next week on Tues, 02/06)

