1. We surveyed a group of 100 individuals to determine their preference for ice cream. Among the respondents, 70 individuals expressed a liking for ice cream, while the remaining 30 individuals reported not liking it. To represent this data, we introduced a variable denoted as X, assigned a value of 1 to individuals who enjoy ice cream, and a value of 0 to those who do not.

Use the frequency distribution table to calculate the mean and variance of X. Here are the formulas you will need.

$$
\bar{X}=\sum_{k=1}^{K} f_{k} X_{k} \quad S_{X}^{2}=\frac{n}{n-1} \sum_{k=1}^{K} f_{k}\left(X_{k}-\bar{X}\right)^{2}
$$

2. You're in a statistics class with 30 students. Everyone takes the final exam, and the grades are all over the place. The average score for the class turns out to be 70 , and the standard deviation is 10 . You scored an 85 . How did you fare relative to the class?

Remember the Z-score formula:

$$
Z=\frac{X-\mu}{\sigma}=
$$

How does your answer change if the standard deviation is 20 ? Why should the standard deviation affect your relative standing in the class?

