ECON 340 Economic Research Methods

Div Bhagia

Lecture 20 Quadratic and Log functional forms

Remember Calculus?

For a function

$$y = f(x)$$

The derivative denoted by:

$$\frac{dy}{dx}$$
 or $f'(x)$

captures how the value of the function changes due to a small change in *x*.

Rules of Differentiation

•
$$y = a \rightarrow \frac{dy}{dx} = 0$$

•
$$y = ax \rightarrow \frac{dy}{dx} = a$$

•
$$y = ax^b \rightarrow \frac{dy}{dx} = abx^{b-1}$$

•
$$y = f(x) + g(x) \rightarrow \frac{dy}{dx} = f'(x) + g'(x)$$

Examples: y = 10, y = 5x, $y = 8x^3$, $y = 3x^2 + 4$

2 / 18

Rules of Differentiation

• Derivative of a log function:

$$y = log(x) \rightarrow \frac{dy}{dx} = \frac{1}{x}$$

• Chain rule:

$$z = f(y), y = g(x) \longrightarrow \frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

Examples: $y = 2 + 3 \cdot \log(x), y = \log(z) \& z = x^2, y = \log(x^2), y = \log(f(x))$

Fitting a Line

Linear relationship (with some error):

$$Y = \beta_0 + \beta_1 X + u$$

Taking the conditional expectation:

$$E(Y|X) = \beta_0 + \beta_1 X + E(u|X)$$

With
$$E(u|X) = 0$$
,
 $E(Y|X) = \beta_0 + \beta_1 X$

OLS fits a linear line between average Y at each X and X.

Is the relationship really linear?

Does this model have a better R^2 ?

6 / 18

Fitting a Line

Linear relationship:

$$\hat{Y} = \hat{eta}_0 + \hat{eta}_1 X$$

Take the derivative:

$$\frac{d\hat{Y}}{dX} = \hat{\beta}_1 \to d\hat{Y} = \hat{\beta}_1 dX$$

Can think of *d* as 'change in': One unit change in *X*, associated with β_1 units change in *Y*.

Impact of *X* on *Y* constant with *X*.

Fitting a Curve

Quadratic relationship:

$$\hat{Y}=\hat{eta}_0+\hat{eta}_1X+\hat{eta}_2X^2$$

Take the derivative:

$$\frac{d\hat{Y}}{dX} = \hat{\beta}_1 + 2\hat{\beta}_2 X$$

Now the impact of *X* on *Y* changes with *X*.

Remember: Derivative captures the slope of the tangent line.

$$w\hat{a}ge = -52207 + 4775.64 \cdot age - 49.493 \cdot age^2$$

How does the predicted wage change going from 30 to 31?

What about going from 50 to 51?

Log Functional Forms

Sometimes we log transform a variable before fitting a model. Useful if the data is skewed or has outliers.

Log Functional Forms

- Log-transformation leads to interpretation of regression coefficients in % changes than unit changes which can sometimes be more informative
- Can think of change in log of X as the relative change in X with respect to its original value

$$\frac{d}{dX}\log(X) = \frac{1}{X} \to d\log(X) = \frac{dX}{X}$$

In which case $100 \times d \log(X)$ represents % change in X

Log Functional Forms: Interpretation

Three possible models:

1. Level-Log:
$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 log(X)$$

Differentiating both left and right hand side with respect to X:

$$\frac{d\hat{Y}}{dX} = \hat{\beta}_1 \cdot \frac{1}{X} \quad \to \quad \hat{\beta}_1 = \frac{d\hat{Y}}{dX/X}$$

In which case,

 $\frac{\hat{\beta}_1}{100} = \frac{\text{unit change in } Y}{\text{\% change in } X}$

Level-Log Model

	Wages
Intercept	-57,224.83*** (5,008.20)
Log Age	32,052.27*** (1,363.87)
Observations R^2	17,578 0.03
Note:	*p<0.1; **p<0.05; ***p<0.01

1% increase in age leads to \$320 increase in predicted wages. $^{14\,/\,18}$

Log Functional Forms: Interpretation

Three possible models:

2. Log-Level: $\hat{\log}(Y) = \hat{\beta}_0 + \hat{\beta}_1 X$

$$\hat{\beta}_1 = \frac{1}{Y} \cdot \frac{dY}{dX} \to 100 \hat{\beta}_1 = \frac{\text{\% change in } Y}{\text{unit change in } X}$$

Log-Level Model

	Log Wages
Intercept	10.31*** (0.02)
Age	0.01*** (0.001)
Observations R ²	17,578 0.03
Note:	*p<0.1; **p<0.05; ***p<0.01

1 year increase in age leads to 1% increase in predicted wages.

Log Functional Forms: Interpretation

Three possible models:

3. Log-Log:
$$\log(\hat{Y}) = \hat{\beta}_0 + \hat{\beta}_1 \log(X)$$

$$\hat{\beta}_1 = \frac{dY/Y}{dX/X} \rightarrow \hat{\beta}_1 = \frac{\% \text{ change in } Y}{\% \text{ change in } X}$$

Log-Log Model

	Log Wages
Intercept	8.99*** (0.08)
Log Age	0.49*** (0.02)
Observations R ²	17,578 0.03
Note:	*p<0.1; **p<0.05; ***p<0.01

1% increase in age leads to 0.49% increase in predicted wages.