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Quadratic and Log functional forms



Remember Calculus?
For a function

y “ f pxq

The derivative denoted by:

dy

dx
or f 1pxq

captures how the value of the function changes due to a small
change in x .
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Rules of Differentiation

‚ y “ a Ñ
dy

dx
“ 0

‚ y “ ax Ñ
dy

dx
“ a

‚ y “ axb Ñ
dy

dx
“ abxb´1

‚ y “ f pxq ` gpxq Ñ
dy

dx
“ f 1pxq ` g 1pxq

Examples: y “ 10, y “ 5x , y “ 8x3, y “ 3x2 ` 4
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Rules of Differentiation
‚ Derivative of a log function:

y “ logpxq Ñ
dy

dx
“

1
x

‚ Chain rule:

z “ f pyq, y “ gpxq Ñ
dz

dx
“

dz

dy
¨
dy

dx

Examples:
y “ 2 ` 3 ¨ logpxq, y “ logpzq & z “ x2, y “ logpx2q, y “ logpf pxqq
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Fitting a Line
Linear relationship (with some error):

Y “ β0 ` β1X ` u

Taking the conditional expectation:

E pY |X q “ β0 ` β1X ` E pu|X q

With E pu|X q “ 0,
E pY |X q “ β0 ` β1X

OLS fits a linear line between average Y at each X and X .
4 / 18



ACS Data: Wages and Age
Is the relationship really linear?
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ACS Data: Wages and Age
Does this model have a better R2?
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Fitting a Line
Linear relationship:

Ŷ “ β̂0 ` β̂1X

Take the derivative:
dŶ

dX
“ β̂1 Ñ dŶ “ β̂1dX

Can think of d as ‘change in’: One unit change in X , associated
with β1 units change in Y .

Impact of X on Y constant with X .
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Fitting a Curve
Quadratic relationship:

Ŷ “ β̂0 ` β̂1X ` β̂2X
2

Take the derivative:

dŶ

dX
“ β̂1 ` 2β̂2X

Now the impact of X on Y changes with X .

Remember: Derivative captures the slope of the tangent line.
8 / 18



ACS Data: Wages and Age
ˆwage “ ´52207 ` 4775.64 ¨ age ´ 49.493 ¨ age2
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ACS Data: Wages and Age

ˆwage “ ´52207 ` 4775.64 ¨ age ´ 49.493 ¨ age2

How does the predicted wage change going from 30 to 31?

What about going from 50 to 51?
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Log Functional Forms
Sometimes we log transform a variable before fitting a model.
Useful if the data is skewed or has outliers.
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Log Functional Forms
‚ Log-transformation leads to interpretation of regression
coefficients in % changes than unit changes which can
sometimes be more informative

‚ Can think of change in log of X as the relative change in X
with respect to its original value

d

dX
logpX q “

1
X

Ñ d logpX q “
dX

X

In which case 100 ˆ d logpX q represents % change in X
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Log Functional Forms: Interpretation
Three possible models:

1. Level-Log: Ŷ “ β̂0 ` β̂1logpX q

Differentiating both left and right hand side with respect to X :

dŶ

dX
“ β̂1 ¨

1
X

Ñ β̂1 “
dŶ

dX {X

In which case,
β̂1

100
“

unit change in Y

% change in X
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Level-Log Model
Wages

Intercept ´57,224.83˚˚˚

(5,008.20)

Log Age 32,052.27˚˚˚

(1,363.87)

Observations 17,578
R2 0.03

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

1% increase in age leads to $320 increase in predicted wages.
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Log Functional Forms: Interpretation
Three possible models:

2. Log-Level: ˆlogpY q “ β̂0 ` β̂1X

β̂1 “
1
Y

¨
dY

dX
Ñ 100β̂1 “

% change in Y

unit change in X
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Log-Level Model
Log Wages

Intercept 10.31˚˚˚

(0.02)

Age 0.01˚˚˚

(0.001)

Observations 17,578
R2 0.03

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

1 year increase in age leads to 1% increase in predicted wages.
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Log Functional Forms: Interpretation
Three possible models:

3. Log-Log: logpŶ q “ β̂0 ` β̂1 logpX q

β̂1 “
dY {Y

dX {X
Ñ β̂1 “

% change in Y

% change in X
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Log-Log Model
Log Wages

Intercept 8.99˚˚˚

(0.08)

Log Age 0.49˚˚˚

(0.02)

Observations 17,578
R2 0.03

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

1% increase in age leads to 0.49% increase in predicted wages.
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