Handout for Lecture 20

Calculus Review and Functional Forms

ECON 340: Economic Research Methods

Instructor: Div Bhagia

For a function y = f(x), the derivative denoted by dy/dx or f'(x) captures how the value of the function changes due to a small change in x.

Rules of differentiation:

- (a) $y = a \rightarrow \frac{dy}{dx} = 0$ (c) $y = ax^b \rightarrow \frac{dy}{dx} = abx^{b-1}$
- (e) Derivative of a log function:

(b)
$$y = ax \rightarrow \frac{dy}{dx} = a$$

(d) $y = f(x) \pm g(x) \rightarrow \frac{dy}{dx} = f'(x) \pm g'(x)$

(f) Chain rule:

$$y = log(x) \rightarrow \frac{dy}{dx} = \frac{1}{x}$$
 $z = f(y), y = g(x) \rightarrow \frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$

Find the derivative for the following functions:

1.
$$y = 10 \rightarrow \frac{dy}{dx} = 0$$

2. $y = 5x \rightarrow \frac{dy}{dx} = 5$
3. $y = 8x^3 \rightarrow \frac{dy}{dx} = 24x^2$
4. $y = 3x^2 + 4 \rightarrow \frac{dy}{dx} = 6x$
5. $y = 2 + 3 \cdot log(x) \rightarrow \frac{dy}{dx} = \frac{3}{x}$
6. $y = log(z), \ z = x^2 \rightarrow \frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} = \frac{1}{z} \cdot 2x = \frac{2x}{x^2} = \frac{2}{x}$
7. $y = log(x^2) \rightarrow \frac{dy}{dx} = \frac{1}{x^2} \cdot 2x = \frac{2}{x}$
8. $y = log(f(x)) \rightarrow \frac{dy}{dx} = \frac{f'(x)}{f(x)}$

• Find $\frac{dY}{dX}$ for the following model:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + u$$

What is the interpretation of β_1 and β_2 ?

$$\frac{dY}{dX} = \beta_1 + 2\beta_2 X$$

 β_1 is the marginal effect of X on Y when X is equal to 0.

 β_2 captures the change in the marginal effect of *X* on *Y* for each additional unit of *X*. In other words, for each one-unit increase in *X*, the effect of *X* on *Y* changes by $2\beta_2$.

• Consider the following model:

$$\log(Y) = \beta_0 + \beta_1 \log(X) + u$$

Differentiate both sides of the above equation with respect to *X* and show that β_1 represents the elasticity of *Y* with respect to *X*.

Differentiating the left-hand side, by chain rule we get:

$$\frac{d}{dX}\log(Y) = \frac{1}{Y} \cdot \frac{dY}{dX}$$

Differentiating the right-hand side :

$$\frac{d}{dX}(\beta_0 + \beta_1 \log(X) + u) = \beta_1 \cdot \frac{1}{X}$$

Setting the derivatives equal to each other since we are differentiating the same function:

$$\frac{1}{Y} \cdot \frac{dY}{dX} = \beta_1 \cdot \frac{1}{X}$$

Re-arranging the terms, we get:

$$\beta_1 = \frac{X}{Y} \cdot \frac{dY}{dX} \equiv$$
 Elasticity of Y with respect to X