Handout for Lecture 20

Calculus Review and Functional Forms

ECON 340: Economic Research Methods

For a function $y=f(x)$, the derivative denoted by $d y / d x$ or $f^{\prime}(x)$ captures how the value of the function changes due to a small change in x.

Rules of differentiation:
(a) $y=a \rightarrow \frac{d y}{d x}=0$
(b) $y=a x \rightarrow \frac{d y}{d x}=a$
(c) $y=a x^{b} \rightarrow \frac{d y}{d x}=a b x^{b-1}$
(d) $y=f(x) \pm g(x) \rightarrow \frac{d y}{d x}=f^{\prime}(x) \pm g^{\prime}(x)$
(e) Derivative of a log function:
(f) Chain rule:

$$
y=\log (x) \rightarrow \frac{d y}{d x}=\frac{1}{x}
$$

$z=f(y), y=g(x) \rightarrow \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$

Find the derivative for the following functions:

1. $y=10 \rightarrow \frac{d y}{d x}=0$
2. $y=5 x \rightarrow \frac{d y}{d x}=5$
3. $y=8 x^{3} \rightarrow \frac{d y}{d x}=24 x^{2}$
4. $y=3 x^{2}+4 \rightarrow \frac{d y}{d x}=6 x$
5. $y=2+3 \cdot \log (x) \rightarrow \frac{d y}{d x}=\frac{3}{x}$
6. $y=\log (z), z=x^{2} \rightarrow \frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x}=\frac{1}{z} \cdot 2 x=\frac{2 x}{x^{2}}=\frac{2}{x}$
7. $y=\log \left(x^{2}\right) \rightarrow \frac{d y}{d x}=\frac{1}{x^{2}} \cdot 2 x=\frac{2}{x}$
8. $y=\log (f(x)) \rightarrow \frac{d y}{d x}=\frac{f^{\prime}(x)}{f(x)}$

- Find $\frac{d Y}{d X}$ for the following model:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+u
$$

What is the interpretation of β_{1} and β_{2} ?

$$
\frac{d Y}{d X}=\beta_{1}+2 \beta_{2} X
$$

β_{1} is the marginal effect of X on Y when X is equal to 0 .
β_{2} captures the change in the marginal effect of X on Y for each additional unit of X. In other words, for each one-unit increase in X, the effect of X on Y changes by $2 \beta_{2}$.

- Consider the following model:

$$
\log (Y)=\beta_{0}+\beta_{1} \log (X)+u
$$

Differentiate both sides of the above equation with respect to X and show that β_{1} represents the elasticity of Y with respect to X.
Differentiating the left-hand side, by chain rule we get:

$$
\frac{d}{d X} \log (Y)=\frac{1}{Y} \cdot \frac{d Y}{d X}
$$

Differentiating the right-hand side :

$$
\frac{d}{d X}\left(\beta_{0}+\beta_{1} \log (X)+u\right)=\beta_{1} \cdot \frac{1}{X}
$$

Setting the derivatives equal to each other since we are differentiating the same function:

$$
\frac{1}{Y} \cdot \frac{d Y}{d X}=\beta_{1} \cdot \frac{1}{X}
$$

Re-arranging the terms, we get:

$$
\beta_{1}=\frac{X}{Y} \cdot \frac{d Y}{d X} \equiv \text { Elasticity of } Y \text { with respect to } X
$$

