ECON 340
 Economic Research Methods

Div Bhagia

Lecture 2
Empirical Distribution \& Measures of Central Tendency

Describing Data

A dataset is a collection of variables. Each variable contains multiple observations of the same measurement.

Types of variables:

- Categorical: gender, race, education (binary: two categories)
- Continuous: income, age, GPA

How do we summarize the information contained in a variable?

The Empirical Distribution

How often do different values occur?
For categorical variables:

$$
f_{k}=\frac{n_{k}}{n}=\frac{\text { observations in category } k}{\text { total observations }}
$$

f_{k} captures the relative frequency of outcome k.

Frequency Distribution Table

Education	Count	Percent
$<$ HS	1540	6.39
HS Grad	7388	30.64
Some College	5595	23.20
4 Year College	5979	24.80
$>$ College	3611	14.98
Total	24113	100

Frequency Distribution Table

Education	Count	Percent	Cumulative
$<$ HS	1540	6.39	6.39
HS Grad	7388	30.64	37.03
Some College	5595	23.20	60.23
4 Year College	5979	24.80	85.02
$>$ College	3611	14.98	100.00
Total	24113	100	

Histogram: Education

The Empirical Distribution

What about continuous variables?

The Empirical Distribution

What about continuous variables?
How often do different values occur in a particular interval?

$$
f_{k}=\frac{\text { observations in interval } k}{\text { total observations }}
$$

Histogram: Household Income

7 / 17

Measures of Central Tendency

Mean: is the average value

Median: is the middle value

Mode: is the number that is repeated more often than any other

Example: 5, 5, 10, 10, 10, 10, 20

Mean

To calculate the mean:

$$
\bar{X}=\frac{\text { sum of all observations }}{\text { number of observations }}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Use \bar{X} to denote the sample mean and μ to denote the population mean.

Mean vs Median

Mean vs Median

- Mean household income: $\$ 112,900$
- Median household income: \$91,600

Why are mean earnings higher than the median?

Percentiles

The $P^{\text {th }}$ percentile is a value such that $P \%$ of observations are at or below that number.

25th percentile a.k.a 1st quartile 75th percentile a.k.a 3rd quartile

What is the 50th percentile called?

More about Mean

- $\sum_{i=1}^{n} X_{i}=n \bar{X}$

More about Mean

- $\sum_{i=1}^{n} X_{i}=n \bar{X}$
- Deviations from the mean are always zero

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n} X_{i}-n \bar{X}=n \bar{X}-n \bar{X}=0
$$

More about Mean

- $\sum_{i=1}^{n} X_{i}=n \bar{X}$
- Deviations from the mean are always zero

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)=\sum_{i=1}^{n} X_{i}-n \bar{X}=n \bar{X}-n \bar{X}=0
$$

- We can always write

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n} \frac{X_{i}}{n}
$$

An easier way to calculate mean

- If data is grouped, we can use the frequency distribution table to calculate the mean:

$$
\bar{X}=\frac{\sum_{k=1}^{K} n_{k} X_{k}}{n}=\sum_{k=1}^{K} f_{k} X_{k}
$$

- Previous example: 5, 5, 10, 10, 10, 10, 20

X_{k}	n_{k}	f_{k}	$X_{k} f_{k}$
5	2		
10	4		
20	1		
Total	7		

Weighted Mean

The weighted mean of a set of data is

$$
\bar{X}=\frac{\sum_{i=1}^{n} w_{i} X_{i}}{\sum_{i=1}^{n} w_{i}}
$$

where w_{i} is the weight of the $i^{\text {th }}$ observation.
Why might we want to use a weighted mean?

2016 Election Predictions

©he Ǎcullork Eimes

The Upshot

olitical calculus

A 2016 Review: Why Key State
 Polls Were Wrong About Trump

By Nate Cohn
May 31, 2017
$f * \pm \rightarrow \square \sqrt{193}$

Education weighting seems to explain a lot

Education was a huge driver of presidential vote preference in the 2016 election, but many pollsters did not adjust their samples - a process known as weighting - to make sure they had the right number of well-educated or less educated respondents.

It's no small matter, since well-educated voters are much likelier to take surveys than less educated ones. About 45 percent of respondents in a typical national poll of adults will have a bachelor's degree or higher, even though the census says that only 28 percent of adults (those 18 and over) have a degree. Similarly, a bit more than 50 percent of respondents who say they're likely to vote have a degree, compared with 40 percent of voters in newly released 2016 census voting data.

Things to do next

- Review this week's material; handouts, notes, and reading (NYT article) on Canvas
- You may be asked to summarize what you got out of the reading in the next class

