

1. You rolled a six-sided die 100 times and noted down how many times each of the six outcomes were realized. Fill in the rest of the table below:

Outcome	Count $\left(n_{k}\right)$	Relative frequency $\left(f_{k}\right)$	Cumulative frequency $\left(F_{k}\right)$
1	18		
2	18		
3	12		
4	16		
5	21		
6	15		
Total	100	1	

Note that

$$
f_{k}=\frac{n_{k}}{n}=\frac{\text { observations in category } k}{\text { total observations }}
$$

(a) How many times did you get a die face with a value of at most 3?
(b) Are the proportions close to what you would have predicted?
2. Find the mean and median for: $3,4,1,6,8$
3. Amongst the mean and the median, which one is more affected by outliers? Explain.
4. We asked a sample of 10 individuals whether they like icecream or not. We then create a variable X that takes value 1 if the individual likes icecream, and 0 otherwise. Here is the data we collected:

$$
1,1,0,0,0,1,0,1,1,1
$$

(a) How many individuals like icecream in our sample?
(b) What proportion of individuals like icecream in our sample?
(c) Use the frequency distribution table and the following formula to calculate the mean of X.

$$
\bar{X}=\frac{\sum_{k=1}^{K} n_{k} X_{k}}{n}=\sum_{k=1}^{K} f_{k} X_{k}
$$

5. We have the following data on shoe sizes $\left(X_{i}\right)$ for four individuals.

$$
X=\{8,6,6,8\}
$$

(a) Calculate the mean:

$$
\mu=\frac{\sum_{i=1}^{N} X_{i}}{N}=
$$

(b) Calculate the weighted mean with weights $w=\{1,1,1,1\}$.

$$
\mu_{\text {Weighted }}=\frac{\sum_{i=1}^{N} w_{i} X_{i}}{\sum_{i=1}^{N} w_{i}}=
$$

(c) Calculate the weighted mean with weights $w=\{1,2,2,1\}$.

$$
\mu_{\text {Weighted }}=\frac{\sum_{i=1}^{N} w_{i} X_{i}}{\sum_{i=1}^{N} w_{i}}=
$$

(d) Calculate the weighted mean with weights $w=\{0.5,0,0,0.5\}$.

$$
\mu_{\text {Weighted }}=\frac{\sum_{i=1}^{N} w_{i} X_{i}}{\sum_{i=1}^{N} w_{i}}=
$$

