# ECON 340 <br> Economic Research Methods 

Div Bhagia

Lecture 19
Categorical Variables \& Interaction Terms

## Fitting a Line

Linear relationship (with some error):

$$
Y=\beta_{0}+\beta_{1} X+u
$$

Taking the conditional expectation:

$$
E(Y \mid X)=\beta_{0}+\beta_{1} X+E(u \mid X)
$$

With $E(u \mid X)=0$,

$$
E(Y \mid X)=\beta_{0}+\beta_{1} X
$$

OLS fits a linear line between average $Y$ at each $X$ and $X$.

## Hypothetical Data: $E$ (wages|educ) and educ



## Dummy Variables

What if the independent variable is a binary variable that takes two values 1 and 0 ?

$$
Y=\beta_{0}+\beta_{1} D+u
$$

Taking conditional expectation (assuming exogeneity):

$$
\begin{aligned}
& E[Y \mid D=1]=\beta_{0}+\beta_{1} \cdot 1=\beta_{0}+\beta_{1} \\
& E[Y \mid D=0]=\beta_{0}+\beta_{1} \cdot 0=\beta_{0}
\end{aligned}
$$

So,

$$
\beta_{1}=E[Y \mid D=1]-E[Y \mid D=0]
$$

## ACS Data: Gender Wage Gap

|  | Wages |
| :--- | :---: |
| Intercept | $67,220.17^{* * *}$ |
|  | $(439.87)$ |
| Female | $-14,661.12^{* * *}$ |
|  | $(637.27)$ |
| Observations | 17,578 |
| $\mathrm{R}^{2}$ | 0.03 |
| Note: | ${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$ |

## Dummy Variables: Interpretation

As before, to interpret $\beta_{1}$ as the causal impact of gender on wages, we need:

$$
E(u \mid \text { female })=0
$$

Meaning that omitted factors that impact wages are uncorrelated with gender, which implies:

$$
\beta_{1}=E[\text { wages } \mid \text { female }=1]-E[\text { wages } \mid \text { female }=0]
$$

However, even if exogeneity doesn't hold, $\hat{\beta}_{1}$ still captures the difference in average wages of men and women in our sample.

# Dummy Variables in Multiple Regression 

$$
\text { Wages }=\beta_{0}+\beta_{1} \text { Age }+\beta_{2} \text { Female }+u
$$

Taking conditional expectation (assuming exogeneity):

$$
\begin{aligned}
& E[\text { Wages } \mid \text { Age }, \text { Female }=1]=\left(\beta_{0}+\beta_{2}\right)+\beta_{1} \text { Age } \\
& E[\text { Wages } \mid \text { Age, Female }=0]=\beta_{0}+\beta_{1} \text { Age }
\end{aligned}
$$

## ACS Data: Wages and Age



## Interaction Terms

We can also include interaction terms in our model as follows:

$$
\text { Wages }=\beta_{0}+\beta_{1} \text { Age }+\beta_{2} \text { Female }+\beta_{3} \text { Female } \times \text { Age }+u
$$

Taking conditional expectation (assuming exogeneity):

$$
\begin{aligned}
& E[\text { Wages } \mid \text { Age }, \text { Female }=1]=\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) \text { Age } \\
& E[\text { Wages } \mid \text { Age, Female }=0]=\beta_{0}+\beta_{1} \text { Age }
\end{aligned}
$$

Now the impact of $X$ on $Y$ varies with $D$.

## ACS Data: Wages and Age



Female
$\rightarrow 0$

- 1


## Interaction of Two Dummy Variables

wages $=\beta_{0}+\beta_{1}$ Female $+\beta_{2}$ Hispanic $+\beta_{3}$ Female $\times$ Hispanic $+u$

Average wages for Non-Hispanic Males:

$$
E(\text { wages } \mid \text { Hispanic }=0, \text { Female }=0)=\beta_{0}
$$

Average wages for Non-Hispanic Females:

$$
E(\text { wages } \mid \text { Hispanic }=0, \text { Female }=1)=\beta_{0}+\beta_{1}
$$

## Interaction of Two Dummy Variables

wages $=\beta_{0}+\beta_{1}$ Female $+\beta_{2}$ Hispanic $+\beta_{3}$ Female $\times$ Hispanic $+u$

Average wages for Hispanic Males:

$$
E(\text { wages } \mid \text { Hispanic }=1, \text { Female }=0)=\beta_{0}+\beta_{2}
$$

Average wages for Hispanic Females:

$$
E(\text { wages } \mid \text { Hispanic }=1, \text { Female }=1)=\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}
$$

## ACS Data: Gender and Ethnicity

|  | Wages |
| :--- | :---: |
| Intercept | $70,179.09^{* * *}$ |
|  | $(473.52)$ |
| Female | $-16,046.81^{* * *}$ |
|  | $(683.42)$ |
| Hispanic | $-19,367.71^{* * *}$ |
|  | $(1,211.46)$ |
| Female X Hispanic | $8,163.75^{* * *}$ |
|  | $(1,788.04)$ |

## Variable with Multiple Categories

Five education categories:
\{Less than HS, HS Grad, Some College, College Degree, >College\}

Add four dummy variables to the regression (why not five?):

$$
\text { wages }=\beta_{0}+\beta_{1} H S+\beta_{2} \text { SomeCol }+\beta_{3} \mathrm{Col}+\beta_{4} \text { MoreThanCol }+u
$$

Reference category: Less than HS
Coefficients capture the difference between average wages for that category and average wages for less than HS.

# Variable with Multiple Categories 

| Education | Wages |
| :---: | :---: |
| Less than HS | 36090.83 |
| High School | 44546.88 |
| Some College | 50182.94 |
| College Degree | 71527.75 |
| More than College | 87775.73 |

## Variable with Multiple Categories

|  | Wages |
| :--- | :---: |
| Intercept | $36,090.83^{* * *}$ |
|  | $(1,386.07)$ |
| High School | $8,456.05^{* * *}$ |
|  | $(1,496.75)$ |
| Some College | $14,092.11^{* * *}$ |
|  | $(1,515.36)$ |
| College Degree | $35,436.92^{* * *}$ |
|  | $(1,499.47)$ |
| More than College | $51,684.90^{* * *}$ |
|  | $(1,559.17)$ |

## Binary Dependent Variable

What if we have a binary variable on the left-hand side?

$$
\begin{gathered}
e m p=\beta_{0}+\beta_{1} e d u c+u \\
E[e m p \mid e d u c]=\beta_{0}+\beta_{1} e d u c
\end{gathered}
$$

Note that,

$$
E[e m p \mid e d u c]=P(e m p=1 \mid e d u c)=\beta_{0}+\beta_{1} e d u c
$$

So, $\beta_{1}$ can be interpreted as the change in the probability of being employed. This is called the Linear Probability Model.

