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Fitting a Line
Linear relationship (with some error):

Y “ β0 ` β1X ` u

Taking the conditional expectation:

E pY |X q “ β0 ` β1X ` E pu|X q

With E pu|X q “ 0,
E pY |X q “ β0 ` β1X

OLS fits a linear line between average Y at each X and X .
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Hypothetical Data: E pwages|educq and educ
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Dummy Variables
What if the independent variable is a binary variable that takes
two values 1 and 0?

Y “ β0 ` β1D ` u

Taking conditional expectation (assuming exogeneity):

E rY |D “ 1s “ β0 ` β1 ¨ 1 “ β0 ` β1

E rY |D “ 0s “ β0 ` β1 ¨ 0 “ β0

So,
β1 “ E rY |D “ 1s ´ E rY |D “ 0s
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ACS Data: Gender Wage Gap

Wages
Intercept 67,220.17˚˚˚

(439.87)

Female ´14,661.12˚˚˚

(637.27)

Observations 17,578
R2 0.03

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Dummy Variables: Interpretation
As before, to interpret β1 as the causal impact of gender on
wages, we need:

E pu|femaleq “ 0

Meaning that omitted factors that impact wages are
uncorrelated with gender, which implies:

β1 “ E rwages|female “ 1s ´ E rwages|female “ 0s

However, even if exogeneity doesn’t hold, β̂1 still captures the
difference in average wages of men and women in our sample.
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Dummy Variables in Multiple Regression

Wages “ β0 ` β1Age ` β2Female ` u

Taking conditional expectation (assuming exogeneity):

E rWages|Age,Female “ 1s “ pβ0 ` β2q ` β1Age

E rWages|Age,Female “ 0s “ β0 ` β1Age
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ACS Data: Wages and Age
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Interaction Terms
We can also include interaction terms in our model as follows:

Wages “ β0 ` β1Age ` β2Female ` β3Female ˆAge ` u

Taking conditional expectation (assuming exogeneity):

E rWages|Age,Female “ 1s “ pβ0 ` β2q ` pβ1 ` β3qAge

E rWages|Age,Female “ 0s “ β0 ` β1Age

Now the impact of X on Y varies with D .
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ACS Data: Wages and Age
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Interaction of Two Dummy Variables

wages “ β0 ` β1Female ` β2Hispanic ` β3Female ˆHispanic ` u

Average wages for Non-Hispanic Males:

E pwages|Hispanic “ 0,Female “ 0q “ β0

Average wages for Non-Hispanic Females:

E pwages|Hispanic “ 0,Female “ 1q “ β0 ` β1
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Interaction of Two Dummy Variables

wages “ β0 ` β1Female ` β2Hispanic ` β3Female ˆHispanic ` u

Average wages for Hispanic Males:

E pwages|Hispanic “ 1,Female “ 0q “ β0 ` β2

Average wages for Hispanic Females:

E pwages|Hispanic “ 1,Female “ 1q “ β0 ` β1 ` β2 ` β3
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ACS Data: Gender and Ethnicity

Wages
Intercept 70,179.09˚˚˚

(473.52)

Female ´16,046.81˚˚˚

(683.42)

Hispanic ´19,367.71˚˚˚

(1,211.46)

Female X Hispanic 8,163.75˚˚˚

(1,788.04)

Observations 17,578
R2 0.05

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Variable with Multiple Categories
Five education categories:
tLess than HS, HS Grad, Some College, College Degree, >Collegeu

Add four dummy variables to the regression (why not five?):
wages “ β0 ` β1HS ` β2SomeCol ` β3Col ` β4MoreThanCol ` u

Reference category: Less than HS

Coefficients capture the difference between average wages for
that category and average wages for less than HS.
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Variable with Multiple Categories

Education Wages
Less than HS 36090.83
High School 44546.88
Some College 50182.94
College Degree 71527.75

More than College 87775.73
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Variable with Multiple Categories
Wages

Intercept 36,090.83˚˚˚

(1,386.07)

High School 8,456.05˚˚˚

(1,496.75)

Some College 14,092.11˚˚˚

(1,515.36)

College Degree 35,436.92˚˚˚

(1,499.47)

More than College 51,684.90˚˚˚

(1,559.17)

Observations 17,578
R2 0.15

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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Binary Dependent Variable
What if we have a binary variable on the left-hand side?

emp “ β0 ` β1educ ` u

E remp|educs “ β0 ` β1educ

Note that,

E remp|educs “ Ppemp “ 1|educq “ β0 ` β1educ

So, β1 can be interpreted as the change in the probability of
being employed. This is called the Linear Probability Model.
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