ECON 340 Economic Research Methods

Div Bhagia

Lecture 18 Omitted Variable Bias, Multiple Regression Model

Test Scores and Class Size

	Dependent variable:		
	testscr		
str	-2.280***		
	(0.480)		
Constant	698.933***		
	(9.467)		
Observations	420		
R2	0.051 0.049		
Adjusted R2			
Note:	*p<0.1; **p<0.05; ***p<0.01		

- School districts with lower student-teacher ratios tend to have higher test scores
- However, students from districts with small classes may have other advantages that help them perform well
- Omitted factors (e.g. student characteristics) can make the OLS estimator biased
- Today's lecture: *omitted variable bias* and *multiple regression*, a method that can eliminate this bias

Consider the following linear regression model:

 $Y = \beta_0 + \beta_1 X + u$

Omitted variable bias occurs when <u>both</u> conditions are true:

(1) The omitted variable is correlated with X

(2) The omitted variable \rightarrow Y

In our example:

$$\mathit{TestScore} = eta_0 + eta_1 \cdot \mathit{STR} + \mathit{u}$$

Which of these omitted factors will lead to bias?

- (a) percentage of English learners
- (b) time of day when tests were conducted
- (c) parking lot space per pupil
- (d) computers per student

$$Y = \beta_0 + \beta_1 X + u$$

- Remember *u* represents all factors, other than *X*, that are determinants of *Y*.
- Omitted Variable Bias means that the exogeneity assumption E(u|X) = 0 doesn't hold.
- If $E(u|X) \neq 0$, OLS estimator is biased.

When $E(u|X) \neq 0$,

$$\hat{\beta}_1 = \beta_1 + \frac{Cov(X, u)}{Var(X)}$$

Direction and strength of bias depends on the correlation between u and X.

In our example:

$$TestScore = \beta_0 + \beta_1 \cdot STR + u$$

What should be the direction of bias due to the following omitted variables?

- (a) percentage of English learners
- (b) computers per student

Multiple Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

- Again can be used for both purposes, causal inference and prediction
- As before we need the data to come from a random sample and no large outliers, but now in addition we also need that X_1 and X_2 are not perfectly multi collinear.
- Moreover, we can modify the mean independence to:

$$E(u|X_1, X_2) = 0$$
 8/15

Multiple Regression Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

- Assumptions: (1) random sample, (2) no large outliers, (3) no perfect multicollinearity, (4) E(u|X₁, X₂) = 0
- Under these assumptions, β₁ captures the causal effect of X₁ keeping X₂ constant, and β₂ captures the causal effect of X₂ keeping X₁ constant.

Control Variables

- While there are cases where we might want to evaluate the effect of both the variables, it is hard to find exogenous variables
- A really good use of the multiple regression model is to instead *control* for omitted variable *W* while trying to estimate the causal effect of *X*

$$Y = \beta_0 + \beta_1 X + \beta_2 W + u$$

Control Variables

$$Y = \beta_0 + \beta_1 X + \beta_2 W + u$$

• So instead of assumption (4), we can assume *conditional mean independence*

$$\mathsf{E}(u|X,W)=\mathsf{E}(u|W)$$

- The idea is that once you control for the *W*, *X* becomes independent of *u*
- Under this modified assumption, we can interpret β₁ as the causal effect of X while *controlling* for W

In Summary

$$TestScore = \beta_0 + \beta_1 \cdot STR + \beta_2 \cdot comp_stu + u$$

• Under assumption:

 $E(u|STR, comp_stu) = 0$

 β_1 causal impact of *STR*, and β_2 causal impact of *comp_stu*

• Under conditional independence:

 $E(u|STR, comp_stu) = E(u|comp_stu)$

 β_1 causal impact of *STR*, and β_2 could still be biased

Test Scores and Class Size

	Dependent variable:		
	testscr		
	(1)	(2)	
str	-2.280***	-1.593***	
	(0.480)	(0.493)	
comp_stu		65.160***	
		(14.351)	
Observations	420	420	
R2	0.051	0.096	
Adjusted R2	0.049	0.092	

13 / 15

Goodness of Fit: The R²

Total Sum of Squares:
$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Explained Sum of Squares: $ESS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$

Residual Sum of Squares: $RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} \hat{u}_i^2$

$$TSS = ESS + RSS$$

A measure of goodness of fit:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

Adjusted R²

 R^2 never decreases when an explanatory variable is added

An alternative measure called Adjusted R^2

$$Adjusted R^2 = 1 - rac{RSS/(n-k-1)}{TSS/(n-1)}$$

where *k* is the number of variables.

 $AdjustedR^2$ only rises if RSS declines by a larger percentage than the degrees of freedom.