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Assumptions for Causal Inference
Assumption 1 (Linearity): The relationship between X and Y is
given by:

Y “ β0 ` β1X ` u

u is the mean zero error term, E puq “ 0.

Assumption 2 (Random Sample): The observed data pYi ,Xiq for
i “ 1,2, ...,n represent a random sample of size n from the
above population model.
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Assumptions for Causal Inference

Assumption 3 (No large outliers): Fourth moments (or Kurtosis) of
X and Y are finite.

Assumption 4 (Mean Independence/Exogeneity): The expected
value of the error term is the same conditional on any value of
the explanatory variable.

E pu|X q “ E puq “ 0
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When the exogeneity assumption fails

Y “ β0 ` β1X ` u

‚ Y : test scores, X : class-size, u : teacher quality

‚ If schools with higher student-teacher ratios have worse
teachers (Ò X , Ó u)

‚ Then, if we see test scores decline with class size (Ò X , Ó Y ),
hard to say if it’s due to teacher quality or class size.
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Sampling Distribution for OLS Estimators
Under Assumptions 1-4, in large samples (n ą 100),

β̂0 „ Npβ0,σ2
β̂0

q, β̂1 „ Npβ1,σ2
β̂1

q

where
σ2
β̂1

“
1
n

Var rpXi ´µX qui s

VarpXiq
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Test Scores and Class Size
We estimated the following model:

TestScorei “ β0 ` β1 ¨ STRi ` u

And found:
β̂0 “ 698.93 and β̂1 “ ´2.28

Even if E pu|STRq “ 0, some uncertainty around estimates due
to sampling variation. Do we really know whether -2.28 is
statistically significantly different from 0?

We want to rule out having found a negative impact due to
sampling variation when there was no impact. 5 / 13



Hypothesis Testing
Since β̂1 „ Npβ1,σ2

β̂1
q in large samples,

T “
β̂1 ´ β1

SE pβ̂1q
„ tn´k

Remember, the t-distribution has fatter tails but is similar to the
standard normal in large samples.
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Hypothesis Testing
Null and alternative hypothesis:

H0 : β1 “ 0 H1 : β1 ‰ 0

The test statistic under the null:

t “
β̂1

SE pβ̂1q

If |t| ą zα{2 we reject the null at α% level of significance and say
that β1 is statistically significant at α% level of significance.

Remember: zα{2 is the value of z that leaves α{2 area in the
upper tail of the standard normal distribution. 7 / 13



Output from R
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Hypothesis Testing
From the output we can see that,

β̂1 “ ´2.28 and SE pβ̂1q “ 0.48

In which case, the t-statistic:

t “
β̂1

SE pβ̂1q
“

´2.28
0.48

“ ´4.75

Since | ´ 4.75| ą 2.58, we can say that β̂1 is statistically
significant at 1% level of significance.
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Hypothesis Testing
From the output we can see that,

β̂1 “ ´2.28 and SE pβ̂1q “ 0.48

In which case, the t-statistic:

t “
β̂1

SE pβ̂1q
“

´2.28
0.48

“ ´4.75

Since | ´ 4.75| ą 2.58, we can say that β̂1 is statistically
significant at 1% level of significance.

Is it also significant at 5% level of significance?
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p-Value
The p-value is the probability of drawing an outcome as or
more extreme given the null hypothesis.

p-value “ 2PpZ ą |t|q

In our example,

p-value “ 2PpZ ą 4.75q “ 0.00

Remember if p ă α, reject the null with α% level of significance.
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Output from R using Stargazer
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Confidence Intervals
As before, we can also create confidence intervals to
summarize the uncertainty associated with our estimates.

A p1 ´αq% confidence interval for β1:

β̂1 ˘ zα{2 ¨ SE pβ̂1q

If 0 is not in the 95% confidence interval, then once again we
can say that β1 is statistically significant at 5% level of
significance.
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Confidence Intervals
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