ECON 340 Economic Research Methods

Div Bhagia

Lecture 15: Ordinary Least Squares, Goodness of Fit

Student-Teacher Ratio and Test Scores

Fitting a Line

- We are interested in the relationship between two variables X and Y
- We start by assuming there is a linear relationship (with some error) between these variables in the population

$$
Y=\beta_{0}+\beta_{1} X+u
$$

- Fit a linear relationship between these two variables using sample data

Student-Teacher Ratio and Test Scores

Simple Linear Regression Model

$$
Y=\beta_{0}+\beta_{1} X+u
$$

- Y : Dependent variable (outcome or response variable)
- X : Independent variable (explanatory variable, regressor)
- β_{0}, β_{1} : intercept and slope (population parameters)
- u : mean zero error term, $E(u)=0$

Which is the best line?

Ordinary Least Squares (OLS)

- We observe Y_{i} and X_{i} for all individuals in our sample.
- Find $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ from sample data by minimizing the sum of squared residuals

$$
\min _{b_{0}, b_{1}} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ are called ordinary least squares (OLS) estimators

Ordinary Least Squares (OLS)

OLS Estimators

Some calculus reveals:

$$
\begin{gathered}
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X} \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\frac{S_{X Y}}{S_{X}^{2}}
\end{gathered}
$$

\rightarrow The best-fit line passes through the sample means!

OLS line passes through the means

Prediction and Residuals

OLS fitted line/predicted values:

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
$$

Residuals/prediction error (the one we minimized):

$$
\hat{u}_{i}=Y_{i}-\hat{Y}_{i}
$$

Prediction and Residuals

For our example, the fitted line:

$$
\text { test̂tscr }=698.93-2.28 \cdot s t r
$$

What is the predicted test score for a school with a student-teacher ratio of 24 ?

What is the prediction error for a school with a student-teacher ratio of 24 and average test score of 677?

How to interpret the coefficients?

Fitted line:

$$
\text { test̂tcr }=698.93-2.28 \cdot s t r
$$

- Intercept: Predicted test score is 698.93 for a school with str $=0$. (Doesn't always make sense!)
- Slope: One more student per teacher lowers the predicted test score by 2.28 . How?
Alternatively: Schools in our sample that had one more student per teacher on average had an average test score that was 2.28 points lower.

Goodness of Fit: The R^{2}

- R-squared measures how well the OLS regression line fits the data
- R-squared is the percent of sample variation in Y that is explained by X

Note that:

$$
Y_{i}=\hat{Y}_{i}+\hat{u}_{i}
$$

R^{2} is the ratio of sample variation of \hat{Y}_{i} to sample variation of Y_{i}

Goodness of Fit: The R^{2}

Total Sum of Squares:

$$
T S S=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

Explained Sum of Squares:

$$
E S S=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

Residual Sum of Squares:

$$
R S S=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

Goodness of Fit: The R^{2}

One can show that, $T S S=E S S+R S S$.
A measure of goodness of fit:

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}
$$

Goodness of Fit: The R^{2}

High R^{2}

Goodness of Fit: The R^{2}

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}
$$

R^{2} lies between 0 and 1

- If X explains no variation in $Y, \hat{\beta}_{1}=0$ and $\hat{Y}_{i}=\hat{\beta}_{0}=\bar{Y}$. In which case, $E S S=0$ and hence $R^{2}=0$.
- On the other hand, if X explains all the variation in Y, $\hat{Y}_{i}=Y_{i}$ and $R S S=0$. In which case, $R^{2}=1$.

