Handout for Lecture 15

Ordinary Least Squares \& Goodness of Fit
ECON 340: Economic Research Methods

Simple Linear Regression Model: $\quad Y=\beta_{0}+\beta_{1} X+u$

- Y : Dependent variable (outcome or response variable)
- X : Independent variable (explanatory variable, regressor)
- β_{0}, β_{1} : intercept and slope (population parameters)
- u : mean zero error term, $E(u)=0$

Ordinary Least Squares (OLS)

To obtain estimates for the intercept and slope of the line, we minimize the distance between the fitted line and the sample data. Let X_{i} and Y_{i} denote the i 'th observation of X and Y in the sample data.

- \hat{Y}_{i} : predicted value of Y_{i}
- $\hat{\beta}_{0}, \hat{\beta}_{1}$: OLS estimators for the intercept and slope
- Residuals/error: $\hat{u}_{i}=\hat{Y}_{i}-Y_{i}$ (Note that we can always write $Y_{i}=\hat{Y}_{i}+\hat{u}_{i}$)

OLS estimators for the intercept $\hat{\beta}_{0}$ and slope $\hat{\beta}_{1}$ are obtained by minimizing the sum of squared residuals:

$$
\sum_{i=1}^{n} \hat{u}_{i}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

A Measure of Goodness of Fit

$$
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S}
$$

where

$$
T S S=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}, \quad E S S=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}, \quad R S S=\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}=\sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

Example: Predicting Final Exam Scores

You've collected data on monthly revenue (Revenue $_{i}$) and advertising spending (AddSpend ${ }_{i}$) for several months for a small business. You fit the following line using OLS:

$$
\text { Revènиe }_{i}=50+3 \cdot \text { AddSpend }_{i}, \quad R^{2}=0.65
$$

1. What are the estimated intercept and slope in the given fitted line?

$$
\hat{\beta}_{0}=50 \quad \hat{\beta}_{1}=3
$$

2. Interpret the intercept and slope coefficient.

Intercept: Predicted revenue is $\$ 50$ when advertising expenditure is 0 .
Slope: Predicted revenue increases by $\$ 3$ for every $\$ 1$ increase in advertising expenditure.
3. What is the predicted revenue for a month where the advertising spending was $\$ 50$?

$$
50+3 \cdot 50=\$ 200
$$

4. If in a particular month, the revenue was $\$ 100$ and advertising spending was 20 , what would be the residual \hat{u} for this observation?

Revènue $=50+3 \cdot 20=110, \quad \hat{u}=$ Revenue - Revenиe $=100-110=-10$
5. How does the predicted revenue increase due to an increase of $\$ 10$ in advertising spending?

$$
3 \times 10=\$ 30
$$

6. What percentage of the variability in revenue is explained by advertising spending?
65% since $R^{2}=0.65$
7. (A bit challenging, try at home.) If I tell you, the variance of revenue over months is 125 . Can you tell me what is the variance of advertising spending?

Note we are given

$$
\begin{gathered}
R^{2}=\operatorname{Var}(\text { Reveñe }) \\
R^{2}=\frac{\operatorname{Var}(\text { Revenиe })}{\operatorname{Var}(\text { Revenue })}=0.65 \rightarrow \operatorname{Var}(\text { Revenue })=0.65 \times 125=81.25 \\
\text { Revenue }_{i}=50+3 \cdot \text { AddSpend }_{i} \rightarrow \operatorname{Var}(\text { Revenue })=3^{2} \cdot \operatorname{Var}(\text { AddŜSend })
\end{gathered}
$$

The above follows from $\operatorname{Var}(a+b X)=b^{2} \operatorname{Var}(X)$. So here $\operatorname{Var}(\operatorname{Add\hat {Spend})}=$ 81.25/9 = 9.03.

