Handout for Lecture 15

Ordinary Least Squares & Goodness of Fit

ECON 340: Economic Research Methods

Instructor: Div Bhagia

Simple Linear Regression Model: $Y = \beta_0 + \beta_1 X + u$

- Y: Dependent variable (outcome or response variable)
- X: Independent variable (explanatory variable, regressor)
- β_0, β_1 : intercept and slope (population parameters)
- *u*: mean zero error term, E(u) = 0

Ordinary Least Squares (OLS)

To obtain estimates for the intercept and slope of the line, we minimize the distance between the fitted line and the sample data. Let X_i and Y_i denote the *i*'th observation of *X* and *Y* in the sample data.

- \hat{Y}_i : predicted value of Y_i
- $\hat{\beta}_0, \hat{\beta}_1$: OLS estimators for the intercept and slope
- Residuals/error: $\hat{u}_i = \hat{Y}_i Y_i$ (Note that we can always write $Y_i = \hat{Y}_i + \hat{u}_i$)

OLS estimators for the intercept $\hat{\beta}_0$ and slope $\hat{\beta}_1$ are obtained by minimizing the sum of squared residuals:

$$\sum_{i=1}^{n} \hat{u}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}$$

A Measure of Goodness of Fit

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

where

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2, \qquad ESS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2, \qquad RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} \hat{u}_i^2$$

Example: Predicting Final Exam Scores

You've collected data on monthly revenue (*Revenue*_i) and advertising spending (*AddSpend*_i) for several months for a small business. You fit the following line using OLS:

 $\hat{Revenue_i} = 50 + 3 \cdot AddSpend_i, \qquad R^2 = 0.65$

1. What are the estimated intercept and slope in the given fitted line?

$$\hat{\beta}_0 = \hat{\beta}_1 =$$

2. Interpret the intercept and slope coefficient.

- 3. What is the predicted revenue for a month where the advertising spending was \$50?
- 4. If in a particular month, the revenue was \$100 and advertising spending was 20, what would be the residual \hat{u} for this observation?
- 5. How does the predicted revenue increase due to an increase of \$10 in advertising spending?
- 6. What percentage of the variability in revenue is explained by advertising spending?
- 7. (A bit challenging, try at home.) If I tell you, the variance of revenue over months is 125. Can you tell me what is the variance of advertising spending?