Handout for Lecture 14

Hypothesis Testing \& p-values
ECON 340: Economic Research Methods

Hypothesis Testing

1. Set up null hypothesis and alternative hypothesis

Null Hypothesis: $\quad H_{0}: \mu=\mu_{0}$
Alternative Hypothesis: $\quad H_{1}: \mu \neq \mu_{0}$
2. Construct test statistic Z if true population variance is known, else use T-statistic.

$$
z_{0}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \quad \text { and } \quad t_{0}=\frac{\bar{x}-\mu_{0}}{S / \sqrt{n}}
$$

3. Under the null if $\bar{X} \sim N\left(\mu_{0}, \sigma^{2} / n\right)$, then $Z \sim N(0,1)$ and $T \sim t_{n-1}$. In case of known population variance, reject the null if $\left|z_{0}\right|>z_{\alpha / 2}$. In the case of unknown population variance, reject the null if $\left|t_{0}\right|>t_{n-1, \alpha / 2}$.

Note: When $n \geq 100$ you can reject the null if $\left|t_{0}\right|>z_{\alpha / 2}$ as in large sample t distribution looks like the standard normal.
p-Value:
p -Value is the probability of obtaining an outcome even more surprising under the null hypothesis than the one you got.

- Known variance: $p=2 \operatorname{Pr}\left(Z>\left|z_{0}\right|\right)$
- Unknown variance, $n<$ 100: $p=2 \operatorname{Pr}\left(T>\left|t_{0}\right|\right)$
- Unknown variance, $n \geq$ 100: $p=2 \operatorname{Pr}\left(T>\left|t_{0}\right|\right)=2 \operatorname{Pr}\left(Z>\left|t_{0}\right|\right)$

Question 1: A car manufacturer wants to estimate the mean CO 2 emissions of a new model of car. A sample of 196 cars is randomly selected and their CO 2 emissions are measured. The sample mean and standard deviation are $120 \mathrm{~g} / \mathrm{km}$ and $20 \mathrm{~g} / \mathrm{km}$, respectively. The car manufacturer had initially claimed that the average CO 2 emissions of this model would be $115 \mathrm{~g} / \mathrm{km}$. Test the manufacturer's claim at a 5% level of significance.

Answer: Null and alternative hypothesis:

$$
H_{0}: \mu=115 \quad H_{1}: \mu \neq 115
$$

Note that here, $\bar{x}=120, S=20$, and $n=196$. We can calculate the t-statistic as follows:

$$
t_{0}=\frac{\bar{x}-\mu_{0}}{S / \sqrt{n}}=\frac{120-115}{20 / \sqrt{196}}=3.5
$$

Under the null $T \sim t_{195}$. However, since the sample size is large enough, we can just use the normal distribution to find the critical value. Critical value: $z_{0.025}=1.96$ leaves 2.5% area in the upper tail. Since $\left|t_{0}\right|=3.5>1.96$ we will reject the null at 5% level of significance.

Question 2: Find the p-value associated with your test statistic in the previous question. Answer: Here the p-value is given by:

$$
p=2 \operatorname{Pr}\left(T>\left|t_{0}\right|\right)=2 \operatorname{Pr}\left(Z>\left|t_{0}\right|\right)=2 \operatorname{Pr}(Z>3.5)=2 \times 0.002=0.004
$$

So only 0.4% outcomes for the sample mean would be more surprising than $120 \mathrm{~g} / \mathrm{km}$ that we found if the true population mean was indeed $115 \mathrm{~g} / \mathrm{km}$.

