## ECON 340 Economic Research Methods

Div Bhagia

Lecture 13: Confidence Intervals

## Expectation and Variance of $\bar{X}$

Let  $X_1, X_2, ..., X_n$  denote independent random draws (random sample) from a population with mean  $\mu$  and variance  $\sigma^2$ .

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Then  $\bar{X}$  is also a random variable with:

$$E(\bar{X}) = \mu$$
  $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$ 

So  $\bar{X}$  is an unbiased and consistent estimator for  $\mu$ .

## Sample Mean Distribution

The distribution of the sample mean is <u>normal</u> if *either* of the following is true:

- The underlying population is normal
- The sample size is large, say  $n \ge 100$

The first one follows from the sample mean being a linear combination of normally distributed variables.

The latter is implied by the Central Limit Theorem.

### **Central Limit Theorem**

If  $X_1, X_2, ..., X_n$  are drawn randomly from a population with mean  $\mu$  and variance  $\sigma^2$ , sample mean  $\overline{X}$  is normally distributed with mean  $\mu$  and variance  $\sigma^2/n$  as long as n is large.

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

#### Simulation

### **Normal Distribution**

95% of the area under the curve lies within 1.96 standard deviations of the true mean.





#### Standard Normal $\rightarrow$ Normal Distribution



### **Normal Distribution**

95% of the time that we take a sample and calculate the sample mean, it will be within 1.96 standard deviations of  $\mu$ .



## **Confidence Intervals**

- If 95% of the time, the sample mean  $\bar{X}$  will be within 1.96 standard deviations of the true mean  $\mu$ .
- Then 95% of the time, the true mean  $\mu$  will be within 1.96 standard deviations of the sample mean  $\overline{X}$ .
- Use this logic to create a 95% confidence interval for the true population mean μ.
- Say in your sample you found sample mean x

  *x* , then 95% confidence interval for μ:

$$ar{x} \pm 1.96\sigma_{ar{X}}$$

## **Confidence Intervals: Interpretation**

There is a 95% chance that the true population average lies in the interval  $\bar{x} \pm 1.96\sigma_{\bar{X}}$ .

What this really means is that if we took 100 random samples from the population and calculated 95% confidence intervals for each sample, we would expect 95 out of 100 intervals to contain the true population mean.

#### **Confidence Intervals: Interpretation**



## **Recipe: Confidence Intervals**

Let  $z_{\alpha/2}$  be the *z*-value that leaves area  $\alpha/2$  in the upper tail of the normal distribution.

Then  $1 - \alpha$  confidence interval is given by

$$ar{x} \pm \underbrace{z_{lpha/2} rac{\sigma}{\sqrt{n}}}_{ ext{Margin of Error}}$$

## Margin of Error

The margin of error will be reduced if

- Population standard deviation is reduced  $(\downarrow \sigma)$
- The sample size is increased  $(\uparrow n)$
- The confidence level is decreased  $(\downarrow (1 \alpha))$

## Population variance is not known!

- So far, we have assumed that we know the true population variance  $\sigma^2$
- This is obviously not realistic!
- Most times we have to use the sample variance  $S^2$  instead of  $\sigma^2$ .
- How do we create a confidence interval in this case?

### Population variance is not known

Instead of the Z statistic, we can use the T statistic

$$T = rac{ar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

It can be shown that this statistic follows a t distribution with n-1 degrees of freedom.

The t-distribution is similar to the normal distribution but has thicker tails to account for the greater uncertainty in smaller samples. However, in large samples *t*-distribution can be approximated by the standard-normal.

# Student's T Distribution



14 / 18

## Student's T Distribution



15 / 18

# Student's T Distribution



16 / 18

## Confidence Intervals: Unknown Variance

- Construct the confidence interval as before but now use *T* statistic instead of *Z*
- So need to use critical value for *t*

$$ar{x} \pm t_{lpha/2,n-1} rac{S}{\sqrt{n}}$$

• But since we said that in large samples, t is approximated by z, we can continue using the standard normal table for the critical values if  $n \ge 100$ .

#### Next up

- Problem Set 3 is due by the end of the day today
- Next class: Hypothesis testing and p-values
- Next week:
  - Review class on Tuesday
  - Midterm exam on Thursday