ECON 340
 Economic Research Methods

Div Bhagia

Lecture 11: Independence \& Correlation

Random Variables

- Random variables take different values under different scenarios.
- Examples: outcome from a coin toss or a die roll, or number of times your wireless network fails before a deadline, etc.
- The likelihood of these scenarios is summarized by the probability distribution.
- Random variables can be discrete or continuous

Two Random Variables

The joint probability distribution of two discrete random variables is the probability that the random variables simultaneously take on certain values.

$$
f(x, y)=\operatorname{Pr}(X=x, Y=y)
$$

$$
\text { Rain }(X=1) \quad \text { No Rain }(X=0) \quad \text { Total }
$$

60-min commute $(Y=60)$	0.3	0.2
30-min commute $(Y=30)$	0.1	0.4
Total		

Marginal Distribution

The marginal probability distribution of a random variable Y is just another name for its probability distribution.

$$
f(y)=\operatorname{Pr}(Y=y)=\sum_{x} \operatorname{Pr}(X=x, Y=y)
$$

Conditional Distribution

The distribution of a random variable Y conditional on another random variable X taking on a specific value is called the conditional distribution of Y given X.

$$
f(y \mid x)=\operatorname{Pr}(Y=y \mid X=x)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(X=x)}=\frac{f(x, y)}{f(x)}
$$

Commute Times

	Rain $(X=1)$	No Rain $(X=0)$	Total
60-min commute $(Y=60)$	0.3	0.2	
30-min commute $(Y=30)$	0.1	0.4	
Total			

Conditional Expectation

The conditional expectation of Y given X is the mean of the conditional distribution of Y given X.

$$
E(Y \mid X=x)=\sum_{y} y \operatorname{Pr}(Y=y \mid X=x)=\sum_{y} y \cdot f(y \mid x)
$$

Calculate $E(Y \mid X=1)$ and $E(Y \mid X=0)$ in the last example. Comparing these tells us how X affects Y.

Can define conditional variance similarly.

Independence

Two random variables X and Y are independently distributed, or independent, if knowing the value of one of the variables provides no information about the other.

$$
\operatorname{Pr}(Y=y \mid X=x)=\operatorname{Pr}(Y=y)
$$

Example: Two consecutive coin tosses.
Note: We can equivalently say that X and Y are independent if $E(Y \mid X)=E(Y)$.

Covariance and Correlation

Covariance is a measure of the extent to which two random variables move together.

Let X and Y be a pair of random variables, then the covariance of X and Y is given by:

$$
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E(X Y)-\mu_{X} \mu_{Y}
$$

The correlation between X and Y is given by:

$$
\rho_{X Y}=\operatorname{corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \quad \text { where }-1 \leqslant \rho \leqslant 1
$$

Uncorrelated vs Independence

If X and Y are independent, then they are also uncorrelated.

$$
E(Y \mid X)=E(Y) \rightarrow \rho_{X Y}=0
$$

However, it is not necessarily true that if X and Y are uncorrelated, then they are also independent.

Sums of Random Variables

X and Y is a pair of random variables, then

$$
\begin{gathered}
E(a X+b Y)=a E(X)+b E(Y) \\
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
\end{gathered}
$$

If X and Y are independent:

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
$$

Portfolio Diversification

You are now contemplating between two stocks with the same average return and spread.

$$
\mu_{X}=\mu_{Y} \quad \sigma_{X}^{2}=\sigma_{Y}^{2}
$$

Should you pick any one stock at random or invest equally in both?

What's next?

- Problem Set 3 is now posted on Canvas (due next week). You can attempt Questions 1 and 2.
- Thursday: Start with Sampling and Estimation.

