Handout for Lecture 11 Independence and Correlation

ECON 340: Economic Research Methods
Instructor: Div Bhagia

Consider two random variables X and Y.

- The joint probability $f(x, y)=\operatorname{Pr}(X=x, Y=y)$ represents the likelihood that X equals x and Y equals y.
- The marginal probability of $Y=y$, denoted $f(y)$, is obtained by summing the joint probability $f(x, y)=\operatorname{Pr}(X=x, Y=y)$ over all possible values of x.
- The conditional probability $f(y \mid x)=\operatorname{Pr}(Y=y \mid X=x)$ represents the likelihood that Y is equal to y, given that X is equal to x.

$$
f(y \mid x)=\operatorname{Pr}(Y=y \mid X=x)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(X=x)}=\frac{f(x, y)}{f(x)}
$$

- The conditional expectation $E(Y \mid x)$ is the expected value of Y given that $X=x$.

$$
E(Y \mid X=x)=\sum_{y} y \operatorname{Pr}(Y=y \mid X=x)=\sum_{y} y f(y \mid x)
$$

$\underline{\text { Uncorrelated vs Independent }}$

- Covariance and correlation:

$$
\begin{gathered}
\sigma_{X Y}=\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
\rho_{X Y}=\operatorname{corr}(X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}} \quad \text { where }-1 \leq \rho \leq 1
\end{gathered}
$$

- Two random variables are uncorrelated if $\operatorname{corr}(X, Y)=0$.
- Two random variables are independent if $f(y \mid x)=f(y)$ for all x and y or equivalently $E(Y \mid X)=E(Y)$.
- If X and Y are independent, then they are also uncorrelated. (The converse is not necessarily true.)

1. The following table gives the joint-probability distribution of rain (X) and commute time in minutes (Y).

	Rain $(X=1)$	No Rain $(X=0)$	Total
60-min commute $(Y=60)$	0.3	0.2	
30-min commute $(Y=30)$	0.1	0.4	
Total			

(a) Fill the marginal probabilities in the column and row labeled Total. For example, the first row in column Total should contain the marginal probability of having a 60-minute commute $(\operatorname{Pr}(Y=60))$.
(b) Find the following conditional probabilities:

- Probability of having a 60-min commute conditional on raining

$$
\operatorname{Pr}(Y=60 \mid X=1)=
$$

- Probability of having a 60-min commute conditional on not raining

$$
\operatorname{Pr}(Y=60 \mid X=0)=
$$

(c) Calculate $E(Y \mid X=1)$ and $E(Y \mid X=0)$.
(d) How does rain impact the expected commute time in this example?
2. You flipped a coin six times and got tails each time. The likelihood of getting a head in your seventh flip is

- $1 / 2$
- More than $1 / 2$
- Less than $1 / 2$

3. Note that for sums of two random variables X and Y :

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

In the above expressions, a and b are constants.
You are contemplating investing in two stocks with the same average return and spread.

$$
\mu_{X}=\mu_{Y} \quad \sigma_{X}^{2}=\sigma_{Y}^{2}
$$

Should you pick any one stock at random or invest equally in both?

Hint: Let $W=0.5 X+0.5 Y$.

