
Optimization
ECON 441: Introduction to Mathematical Economics Instructor: Div Bhagia

Optimization is the process of finding the best solution to a problem, given a set of con-
straints and objectives. In economics, optimization plays a central role in understanding
how individuals, firms, and governments make decisions to allocate scarce resources
efficiently. In the context of functions, optimization involves finding a function’s maxi-
mum or minimum value.
Global vs. Local Extrema

• Local maximum: A point where the function attains its highest value within a
neighborhood.

• Local minimum: A point where the function attains its lowest valuewithin a neigh-
borhood.

• Global (or absolute) maximum: A point where the function attains its highest value
over the entire domain.

• Global (or absolute) minimum: A point where the function attains its lowest value
over the entire domain.
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Note that all global extrema are also considered local extrema. Furthermore, there can
be multiple local and global extrema for a function. For example, consider the constant
function 𝑓 (𝑥) = 2. In this case, all points in the function’s domain are global maxima
and global minima. There are also functions that have no extremum points, such as
𝑓 (𝑥) = 𝑥, which continuously increases as 𝑥 increases and continuously decreases as 𝑥
decreases, without reaching any peak or valley.

1 Unconstrained Optimization with One Variable
We will start with the simple case of finding a maximum or a minimum of a single-
variable function. First, wewill cover the first and second-order conditions for identify-
ing the local maxima orminima of a function. Wewill then briefly discuss the conditions
necessary for identifying global extrema.

1.1 First and Second-Order Conditions

As illustrated in the figure above, our objective is to locate the peaks or valleys of a
function. Since the derivative captures the rate of change of a function, the deriva-
tive of the function at peaks and valleys should be equal to zero. This is because the
function is relatively flat in the small neighborhood of the peak or valley.
We define a critical point as a point where the function’s derivative is equal to zero. All
local maxima and minima of a function, if any, must occur at critical points where the
derivative of the function is equal to zero.
The necessary condition for 𝑥∗ to be a maximum or minimum point of a continuously
differentiable function 𝑓 (𝑥) is:

𝑓 ′(𝑥∗) = 0

Here, 𝑥∗ is called a critical/stationary point.
Example. Let’s find all the critical points for the function 𝑓 (𝑥) = 𝑥2 − 24𝑥 + 36.
We start by taking the derivative of 𝑓 (𝑥):

𝑓 ′(𝑥) = 2𝑥 − 24
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Next, we set 𝑓 ′(𝑥) equal to zero and solve for 𝑥. 2𝑥 − 24 = 0 → 𝑥 = 12. Therefore, the
critical point of 𝑓 (𝑥) is 𝑥∗ = 12.

Note that it is necessary that at any maxima or minima, the derivative of the function is
0. To see this, consider a point 𝑐 where 𝑓 ′(𝑐) > 0, so the function is increasing at point
𝑐. Then the value of the function at a point just to the left of 𝑐 will be smaller than 𝑓 (𝑐),
so 𝑐 cannot be a local minimum. Similarly, the value of the function at a point just to
the right of 𝑐 will be greater than 𝑓 (𝑐), so 𝑐 cannot be a local maximum.
While being a critical point is a necessary condition, it is not a sufficient condition for
maxima or minima. This means that at any maximum or minimum point, the derivative
of the function must be equal to zero. However, simply having a zero derivative at a
point is not enough to conclude that the point is a maximum or a minimum. In some
cases, the function may have an inflection point or a flat spot, as shown in the following
figure.

Furthermore, even if we have identified a critical point that is not an inflection point,
we still cannot tell whether it is a maximum or a minimum point. To determine whether
the point is indeed a maximum, a minimum, or neither, we need to analyze the behav-
ior of the function in the neighborhood of the critical point. For instance, when we
are at a peak, it should be the case that the function was increasing on the left side
of the critical point 𝑥∗ and decreasing on the right side. In other words, the derivative
of the function was positive on the left side of 𝑥∗ and negative on the right side. This
approach is called the first derivative test.
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First Derivative Test

Suppose 𝑓 ′ (𝑥0) = 0, then 𝑥∗ is a
• maximum if 𝑓 ′(𝑥) goes from + to − in the immediate neighborhood of 𝑥0

• minimum if 𝑓 ′(𝑥) goes from − to + in the immediate neighborhood of 𝑥0

• not an extreme point if 𝑓 ′(𝑥) has the same sign in the immediate neighborhood
of 𝑥0

𝑓 ′ (𝑥 ) = 0

𝑓 ′ (𝑥 ) = 0

𝑓 ′(𝑥 )
<

0𝑓
′ (𝑥

) >
0

𝑓 ′(𝑥 ) < 0
𝑓
′ (𝑥 )

>
0

Example. For the function 𝑓 (𝑥) = 𝑥2−24𝑥 +36, with the derivative 𝑓 ′(𝑥) = 2𝑥−24, the
critical point is 𝑥∗ = 12. Consider a point just below 12, say 𝑥 = 11.99. The derivative
at this point is 𝑓 ′(11.99) = 2(11.99) − 24 = −0.02 < 0. Now consider a point just
above 12, say 𝑥 = 12.01. The derivative at this point is 𝑓 ′(12.01) = 2(12.01) − 24 =

0.02 > 0. So the function is decreasing as 𝑥 approaches 𝑥∗ and then starts increasing
beyond 𝑥∗. So we can conclude that the critical point 𝑥∗ = 12 corresponds to a valley
or a local minimum.

Instead of checking whether the derivative goes from positive to negative, we can also
just look at the sign of the second derivative at the critical point, which is often easier.
This is called the second derivative test.
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Second Derivative Test

Suppose 𝑓 ′ (𝑥0) = 0, then 𝑥∗ is a
1. a maximum if 𝑓 ′′(𝑥∗) < 0

2. a minimum if 𝑓 ′′(𝑥∗) > 0

The second derivative of a function is the derivative of the first derivative, and, hence
it measures the rate of change of the first derivative. Consider a critical point 𝑥∗. When
𝑓 ′′(𝑥∗) < 0, it means that 𝑓 ′(𝑥) is decreasing in the neighborhood of 𝑥∗. Since 𝑓 ′(𝑥∗) = 0
and 𝑓 ′(𝑥) is decreasing in the neighborhood of 𝑥∗, it must be that the sign of 𝑓 ′(𝑥)
changes from positive to negative at 𝑥∗, indicating a local maximum. Similarly, when
𝑓 ′′(𝑥∗) > 0, it means that 𝑓 ′(𝑥) is increasing at 𝑥∗, and it must be that 𝑓 ′(𝑥) changes
from negative to positive at 𝑥∗, indicating a local minimum.

Example. For the function 𝑓 (𝑥) = 𝑥2−24𝑥 +36, with the derivative 𝑓 ′(𝑥) = 2𝑥−24, the
critical point is 𝑥∗ = 12. The second derivative is given by, 𝑓 ′′(𝑥) = 2, which is positive
at all points, including at 𝑥 = 12. So from the second derivative test, we can conclude
that 12 is a local minimum.

Finally, note that if 𝑓 ′(𝑥∗) = 0 and 𝑓 ′′(𝑥∗) > 0 or 𝑓 ′′(𝑥∗) < 0, then we have a sufficient
condition for determining whether 𝑥∗ is a maximum or minimum point. However, this
condition is not necessary, as there are caseswhere 𝑓 ′′(𝑥∗) = 0, and yet 𝑥∗ is amaximum
orminimumpoint. An example of such a case is the function 𝑓 (𝑥) = 𝑥4, with 𝑓 ′(𝑥) = 4𝑥3

and 𝑓 ′′(𝑥) = 12𝑥2. The critical point for this function is at 0 and 𝑓 ′′(0) = 0, yet 0 is the
minimum point. The graph of this function is presented below.
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Alternatively, we can say that 𝑓 ′(𝑥∗) = 0 and 𝑓 ′′(𝑥∗) ≥ 0 or 𝑓 ′′(𝑥∗) ≤ 0 is the necessary
condition for determining whether 𝑥∗ is a maximum or minimum point.
The following table summarizes the first and second-order conditions for local maxi-
mum and minimum.
Condition Maximum Minimum
First-order necessary 𝑓 ′(𝑥) = 0 𝑓 ′(𝑥) = 0

Second-order necessary † 𝑓 ′′(𝑥) ≤ 0 𝑓 ′′(𝑥) ≥ 0

Second-order sufficient † 𝑓 ′′(𝑥) < 0 𝑓 ′′(𝑥) > 0

† Applicable only after the first-order necessary condition has been satisfied.

1.2 Conditions for Global Extrema

The conditions for global extrema are similar to those for local extrema, but now we
need to look at the sign of 𝑓 ′′(𝑥) over the entire domain of the function and not just
locally at 𝑥∗. In particular, if 𝑓 ′′(𝑥) < 0 for all 𝑥 in the domain of 𝑓 , then any critical point
of 𝑓 is a unique global maximum. This is because 𝑓 ′(𝑥) is decreasing over the entire
domain of 𝑥, and can only be 0 at a unique critical point where it goes from positive to
negative, implying that it is the unique global maximum.
At this point, it is useful to define concave and convex functions.

• A function 𝑓 (𝑥) is said to be concave if 𝑓 ′′(𝑥) ≤ 0 for all 𝑥.
• A function 𝑓 (𝑥) is said to be convex if 𝑓 ′′(𝑥) ≥ 0 for all 𝑥.
• A function 𝑓 (𝑥) is said to be strictly concave if 𝑓 ′′(𝑥) < 0 for all 𝑥.
• A function 𝑓 (𝑥) is said to be strictly convex if 𝑓 ′′(𝑥) > 0 for all 𝑥.

So now, we can write the conditions for global extrema in terms of concave and convex
functions.
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• If a function is (strictly) concave, any critical point will give us a (unique) global
maximum.

• If a function is (strictly) convex, any critical point will give us a (unique) global
minimum.

Since concave and convex functions allow flat regions, it is possible for there to be
multiple extrema. This was the case in our example with 𝑓 (𝑥) = 2, which is both a
concave and a convex function as 𝑓 ′′(𝑥) = 0.

2 Unconstrained Optimization with Multiple Variables
In economics, we often encounter situations where we need to maximize a function
that involves more than one variable. For example, we may want to determine the
optimal quantity of two or more inputs, such as labor and capital, that a firm should
use to produce a given level of output.
To solve for the optimal values of multiple input variables, we need to take the partial
derivative of the output functionwith respect to each input variable and set them equal
to zero. This is the first-order condition (FOC) for multivariate functions.
For a function of two variables 𝑓 (𝑥, 𝑦), the FOC is given by:

𝑓𝑥 =
𝜕 𝑓

𝜕𝑥
= 0, 𝑓𝑦 =

𝜕 𝑓

𝜕𝑦
= 0

Here, 𝑓𝑥 and 𝑓𝑦 are the partial derivatives of 𝑓 with respect to 𝑥 and 𝑦, respectively.
In particular, 𝑓𝑥 captures, how 𝑓 changes as 𝑥 changes while holding 𝑦 constant. So
when calculating the partial derivative with respect to one variable, we treat the other
variable as a constant.

Example. Let’s find all the critical points for the function
𝑓 (𝑥, 𝑦) = 𝑥 + 𝑦2 − 𝑥2𝑦

Note that, 𝑓𝑥 = 1 − 2𝑥𝑦 and 𝑓𝑦 = 2𝑦 − 𝑥2. Setting 𝑓𝑥 = 0, we get 𝑥𝑦 = 0.5 and setting
𝑓𝑦 = 0, we get 𝑦 = 0.5𝑥2. Plugging 𝑦 = 0.5𝑥2 in 𝑥𝑦 = 0.5, we get at 𝑥 = 1 and 𝑦 = 0.5.
So the critical point for this function is (1,0.5).
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Example. Consider the profit function 𝜋(𝐾, 𝐿) = 𝑄(𝐾, 𝐿) − 𝑟𝐾 − 𝑤𝐿, where 𝑄(𝐾, 𝐿)
is the production function that specifies the maximum quantity of output that can be
produced using 𝐾 units of capital and 𝐿 units of labor. Here, 𝑟 and 𝑤 are the prices of
capital and labor, respectively.
The partial derivative of 𝜋 with respect to 𝐿 is given by:

𝜋𝐿 =
𝜕𝜋

𝜕𝐿
= 𝑄𝐿 − 𝑤 = 0

Here,𝑄𝐿 is the partial derivative of the production functionwith respect to labor, whichmeasures the marginal product of labor (MPL) or the increase in output resulting from
an additional unit of labor. Similarly,𝑄𝐾 is the partial derivative of the production func-
tion with respect to capital, which measures the marginal product of capital (MPK).
The partial derivative of 𝜋 with respect to 𝐾 is:

𝜋𝐾 =
𝜕𝜋

𝜕𝐾
= 𝑄𝐾 − 𝑟 = 0

At the critical point where both FOCs are satisfied, the firm will choose inputs so that
the price of each input is equal to its marginal product. (Note that 𝑄𝐾 and 𝑄𝐿 are func-tions of 𝐾 and 𝐿.)

For multivariate functions, the second-order conditions involve calculating all the (own
and cross) second partial derivatives of the function. We will skip details on these
conditions here. However, it is important to note that the concept of concavity and
convexity can be extended to multivariate functions. In particular, we can define a
concave (convex) function as a function whose graph lies below (above) any line seg-
ment connecting any two points on the graph. (See the slides for Lecture 12 for more
details.) Moreover, as before, any critical point of a multivariate (strictly) concave/con-
vex function represents a (unique) global maximum/minimum.

3 Constrained Optimization
Lots of problems in economics involve optimizing a function subject to one or more
constraints. For example, a firm may want to maximize its profits subject to produc-
tion constraints, or a consumer may want to maximize their utility subject to a budget
constraint. To solve such problems, we use the method of Lagrange multipliers.
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Suppose we want to maximize (or minimize) a function 𝑓 (𝑥, 𝑦) subject to a constraint
𝑔(𝑥, 𝑦) = 𝑐, where 𝑐 is a constant. The method of Lagrange multipliers involves con-
structing a new function, known as the Lagrangian, that combines the objective func-
tion and the constraint function as follows:

𝐿 (𝑥, 𝑦, _) = 𝑓 (𝑥, 𝑦) + _[𝑐 − 𝑔(𝑥, 𝑦)]

Here, _ is the Lagrange multiplier. To find the optimal values of 𝑥 and 𝑦, we need to
take partial derivatives of the Lagrangianwith respect to each variable and the Lagrange
multiplier and set them equal to zero. This gives us the first-order conditions:

𝐿𝑥 (𝑥, 𝑦, _) =
𝜕𝐿

𝜕𝑥
= 𝑓𝑥 (𝑥, 𝑦) − _ · 𝑔𝑥 (𝑥, 𝑦) = 0

𝐿𝑦 (𝑥, 𝑦, _) =
𝜕𝐿

𝜕𝑦
= 𝑓𝑥 (𝑥, 𝑦) − _ · 𝑔𝑥 (𝑥, 𝑦) = 0

𝐿_ (𝑥, 𝑦, _) =
𝜕𝐿

𝜕_
= 𝑐 − 𝑔(𝑥, 𝑦) = 0

Here, 𝑓𝑘 and 𝑔𝑘 represent the partial derivative with respect to 𝑥𝑘 of the objective
function and the constraint, respectively.
Intuitively, the Lagrange multiplier method works because it allows us to take into ac-
count the constraint when optimizing the function. By introducing the Lagrange multi-
plier, we are effectively adding a penalty term to the objective function that accounts
for the constraint. The Lagrange multiplier _ has an economic interpretation as the
shadow price of the constraint. It measures the change in the objective function re-
sulting from a small change in the constraint function. Thus, the Lagrange multiplier
provides us with information about the value of relaxing or tightening the constraint.

Example. We want to maximize utility given by 𝑈 (𝑥, 𝑦) = 𝑥𝑦 subject to the budget
constraint 4𝑥 + 𝑦 = 12.
We start by setting up the Lagrangian:

𝐿 (𝑥, 𝑦, _) = 𝑥𝑦 + _(12 − 4𝑥 − 𝑦)
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First-order conditions:
𝜕𝐿

𝜕𝑥
= 𝑦 − 4_ = 0 (1)

𝜕𝐿

𝜕𝑦
= 𝑥 − _ = 0 (2)

𝜕𝐿

𝜕_
= 12 − 4𝑥 − 𝑦 = 0 (3)

From equations (1) and (2), we have 𝑦 = 4_ and 𝑥 = _, which implies that 𝑦 = 4𝑥.
Plugging this in equation (3):

12 − 4𝑥 − 4𝑥 = 0 → 𝑥∗ = 1.5, 𝑦∗ = 6, _∗ = 1.5

Interpretation of _∗: If income increases by a dollar, utility increases by 1.5.

The method of Lagrange multipliers can be extended to problems with more than two
variables and constraints. For example, consider the problem of maximizing a function
𝑓 (𝑥, 𝑦, 𝑧) subject to two constraints 𝑔(𝑥, 𝑦, 𝑧) = 𝑐 and ℎ(𝑥, 𝑦, 𝑧) = 𝑚, where 𝑐 and 𝑚 are
constants. To solve this problem, we will need to introduce two Lagrange multipliers
and then construct the Lagrangian function as follows:

𝐿 (𝑥, 𝑦, 𝑧, _, `) = 𝑓 (𝑥, 𝑦, 𝑧) + _[𝑐 − 𝑔(𝑥, 𝑦, 𝑧)] + `[𝑚 − ℎ(𝑥, 𝑦, 𝑧)]

To find the optimal values of 𝑥, 𝑦, and 𝑧 that maximize 𝑓 (𝑥, 𝑦, 𝑧) subject to the two
constraints, we can take the partial derivatives of the Lagrangian with respect to 𝑥, 𝑦,
𝑧, _, and `, and set them equal to zero.

Global Extrema with Constraints

The Lagrange multiplier method transforms the constrained optimization problem of
maximizing 𝑓 (𝑥, 𝑦) subject to 𝑔(𝑥, 𝑦) into an unconstrained optimization problem of
maximizing 𝐿 (𝑥, 𝑦, _). We know that in the case of unconstrained optimization, any
critical point of a concave function represents a global maximum. In the case of con-
strained optimization, if both 𝑓 (𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are concave, then 𝐿 (𝑥, 𝑦, _) will also be
concave, and any critical point of 𝐿 (𝑥, 𝑦, _) will represent the global maximum of 𝑓 (𝑥, 𝑦)
subject to 𝑔(𝑥, 𝑦). However, requiring functions to be concave is a strong condition. We
can instead use the weaker condition that 𝑓 (𝑥, 𝑦) is quasiconcave, and the constraint
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set,𝐶 = {(𝑥, 𝑦) : 𝑔(𝑥, 𝑦) = 𝑐}, is a convex set to ensure that we are identifying the global
maximum. (See the slides for Lecture 12 for definitions.)
The stationary point (𝑥∗1, 𝑥∗2, ..., 𝑥∗𝑛) of the Lagrangian corresponding to the problem of
optimizing 𝑓 (𝑥1, 𝑥2, .., 𝑥𝑛) subject to a constraint 𝑔(𝑥1, 𝑥2, ..., 𝑥𝑛) = 𝑐 is a globalmaximum
if:

1. 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛) is quasiconcave
2. The constraint set is convex

4 Envelope Theorem
In economics, we are often interested in understanding how the value of a function
changes in response to certain parameters. For example, we may be interested in how
a consumer’s utility changes in response to changes in prices, or how a firm’s prof-
its change in response to changes in wages. When analyzing how a function’s value
changes in response to changes in parameters, we need to consider both the direct im-
pact of changing the parameters on the function’s value, as well as the indirect impact
of changing the parameters on the optimal inputs, which in turn affects the function’s
value. The Envelope Theorem tells us that we do not need to worry about the indirect
effect of changing parameters on the optimal inputs — we can simply focus on the di-
rect effect.
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Envelope Theorem: Unconstrained Maximization
Consider the following maximization problem:

max
𝑥

𝑓 (𝑥, 𝛼)

Here, 𝛼 is a parameter. Since the optimal input may depend on 𝛼, let’s denote it by
𝑥∗(𝛼). Now let’s define the maximum value function:

𝑉 (𝛼) = 𝑓 (𝑥∗(𝛼), 𝛼)

The envelope theorem states that,
𝑉𝛼 =

𝜕𝑉

𝜕𝛼
= 𝑓 ∗𝛼

where 𝑓 ∗𝛼 is the partial derivative of 𝑓 with respect to 𝑥 at 𝑥∗
It is actually straightforward to see why this is the case. Note, that when we differen-
tiate 𝑉 with respect to 𝛼,

𝑉𝛼 = 𝑓 ∗𝑥 · 𝜕𝑥
∗

𝜕𝛼
+ 𝑓 ∗𝛼

Here, 𝑓 ∗𝑥 is the partial derivative of 𝑓 with respect to 𝑥 at 𝑥∗. By first order conditions
for optimization, 𝑓 ∗𝑥 = 0, and hence 𝑉𝛼 = 𝑓 ∗𝛼 .

Example. Say we want to choose labor input 𝐿 to maximize profit
max
𝐿

𝜋(𝐿, 𝑤) = ln 𝐿 − 𝑤𝐿

Here, 𝑤 is the wage rate. Writing the first-order condition:
𝜋𝐿 =

1
𝐿
− 𝑤 = 0 → 𝐿∗ =

1
𝑤

Since 𝐿∗ depends on 𝑤, we can write it as 𝐿∗(𝑤).
Now, we are interested in howoptimal profit changeswith respect to changes inwages.
To answer this question, we first write down the maximum value function, which here
depends on 𝑤.

𝑉 (𝑤) = 𝜋(𝐿∗(𝑤), 𝑤) = ln 𝐿∗(𝑤) − 𝑤𝐿∗(𝑤)

Now to see how𝑉 (𝑤) varies with 𝑤 we need the derivative of𝑉 with respect to 𝑤. The
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envelope theorem says that this derivative is given by
𝑉 ′(𝑤) = 𝜋𝑤 (𝐿∗(𝑤), 𝑤) = −𝐿∗(𝑤) = −1

𝑤

We can also verify this by plugging in 𝐿∗(𝑤) = 1/𝑤 in the expression for 𝑉 (𝑤) and then
differentiating with respect to 𝑤.

𝑉 (𝑤) = ln 𝐿∗(𝑤) − 𝑤𝐿∗(𝑤) = ln(1/𝑤) − 1 = ln 1 − ln𝑤 − 1 → 𝑉 ′(𝑤) = −1
𝑤

The envelope theorem for constrained optimization problems is stated below.
Envelope Theorem: Constrained Maximization
Consider the following constrained optimization problem

max
𝑥,𝑦

𝑓 (𝑥, 𝑦;𝛼) s.t. 𝐺 (𝑥, 𝑦;𝛼) = 0

Lagrangian function:
𝐿 (𝑥, 𝑦, _;𝛼) = 𝑓 (𝑥, 𝑦;𝛼) + _𝐺 (𝑥, 𝑦;𝛼)

As before, define the value function 𝑉 (𝛼) = 𝑓 (𝑥∗, 𝑦∗;𝛼). Then the envelope theorem
states,

𝜕𝑉

𝜕𝛼
=
𝜕𝐿 (𝑥∗, 𝑦∗, _∗;𝛼)

𝜕𝛼

The above theorem directly implies interpretation of the lagrange multiplier. Say max
𝑓 (𝑥, 𝑦) subject to 𝑔(𝑥, 𝑦) = 𝑐 Can think of the constraint as:

𝐺 (𝑥, 𝑦, 𝑐) = 𝑐 − 𝑔(𝑥, 𝑦)

So here 𝑐 is the parameter 𝛼. Now what happens due to change in 𝑐 to the value
function is given by

𝜕𝑉

𝜕𝛼
=
𝜕𝐿 (𝑥∗, 𝑦∗, _∗;𝛼)

𝜕𝛼
= _∗

Example. We want to maximize the utility function 𝑈 (𝑥1, 𝑥2) = 𝑥1𝑥2 subject to the
budget constraint 𝑝1𝑥1 + 𝑝2𝑥2 = 𝑚, where 𝑚 is the total income. We are interested in
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how the total utility changes due to a change in price of good 1.
Setting up the Lagrangian:

𝐿 (𝑥1, 𝑥2, _) = 𝑥1𝑥2 + _(𝑚 − 𝑝1𝑥1 − 𝑝2𝑥2)

First-order conditions:
𝐿1 = 𝑥2 − _𝑝1 = 0 (4)
𝐿2 = 𝑥1 − _𝑝2 = 0 (5)
𝐿_ = 𝑚 − 𝑝1𝑥1 − 𝑝2𝑥2 = 0 (6)

Equations (4) and (5) imply that 𝑥2/𝑥1 = 𝑝1/𝑝2. Plugging 𝑥2 = 𝑝1𝑥1/𝑝2 in equation (6):
𝑚 − 𝑝1𝑥1 − 𝑝2𝑥2 = 𝑚 − 𝑝1𝑥1 − 𝑝1𝑥1 → 𝑥∗1 =

𝑚

2𝑝1
, 𝑥∗2 =

𝑚

2𝑝2
, _∗ =

𝑚

2𝑝1𝑝2

Denote 𝐿∗ = 𝐿 (𝑥∗1, 𝑥∗2, _∗). Then according to the envelope theorem how optimal utility
changes with respect to 𝑝1 is given by

𝜕𝐿∗

𝜕𝑝1
= −_∗𝑥∗1 = − 𝑚2

4𝑝2
1𝑝2

We can verify that this is true as:
𝑉 (𝑝1, 𝑝2, 𝑚) = 𝑥∗1𝑥

∗
2 =

𝑚2

4𝑝1𝑝2
→ 𝜕𝑉

𝜕𝑝1
= − 𝑚2

4𝑝2
1𝑝2
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