Optimization Examples

Example 1: Utility Maximization

Consider the following utility maximization problem:

$$
\max _{\left\{x_{1}, x_{2}\right\}} \quad x_{1}^{\alpha} x_{2}^{\beta} \quad \text { s.t. } \quad p_{1} x_{1}+p_{2} x_{2}=m
$$

Here, p_{1} and p_{2} are the prices of goods 1 and 2 , and m is the total income available to spend on the two goods. To find the critical points, we start by setting up the Lagrange function:

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}^{\alpha} x_{2}^{\beta}+\lambda\left(m-p_{1} x_{1}-p_{2} x_{2}\right)
$$

The first-order conditions are given by:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=\alpha x_{1}^{\alpha-1} x_{2}^{\beta}-\lambda p_{1}=0 \tag{1}\\
& \frac{\partial \mathcal{L}}{\partial x_{1}}=\beta x_{1}^{\alpha} x_{2}^{\beta-1}-\lambda p_{2}=0 \tag{2}\\
& \frac{\partial \mathcal{L}}{\partial \lambda}=m-p_{1} x_{1}-p_{2} x_{2}=0 \tag{3}
\end{align*}
$$

From equations (1) and (2), we have $\alpha x_{1}^{\alpha-1} x_{2}^{\beta}=\lambda p_{1}$ and $\beta x_{1}^{\alpha} x_{2}^{\beta-1}=\lambda p_{2}$, dividing the first expression by the second, we get:

$$
\frac{\alpha x_{1}^{\alpha-1} x_{2}^{\beta}}{\beta x_{1}^{\alpha} x_{2}^{\beta-1}}=\frac{\lambda p_{1}}{\lambda p_{2}}
$$

Simplifying this expression further:

$$
\frac{\alpha x_{2}^{\beta} x_{2}^{1-\beta}}{\beta x_{1}^{\alpha} x_{1}^{1-\alpha}}=\frac{p_{1}}{p_{2}} \rightarrow \frac{\alpha x_{2}}{\beta x_{1}}=\frac{p_{1}}{p_{2}}
$$

Then we can write that,

$$
x_{2}=\frac{\beta}{\alpha} \cdot \frac{p_{1}}{p_{2}} \cdot x_{1}
$$

Plugging the above expression for x_{2} in equation (3):

$$
m-p_{1} x_{1}-p_{2} x_{2}=m-p_{1} x_{1}-\frac{\beta}{\alpha} \cdot p_{1} x_{1}=m-p_{1} x_{1}\left(1+\frac{\beta}{\alpha}\right)=0
$$

So we can find,

$$
x_{1}^{*}=\frac{\alpha}{\alpha+\beta} \frac{m}{p_{1}}
$$

Plugging back x_{1} in the expression for x_{2}, we can find:

$$
x_{2}^{*}=\frac{\beta}{\alpha+\beta} \frac{m}{p_{2}}
$$

Example 2: Cost Minimization

Consider the following cost minimization problem where p is the price of capital, and w is the price of labor. Quantity is constrained at \bar{Q}.

$$
\max _{\{K, L\}} p K+w L \quad \text { s.t. } \quad Q(K, L)=\bar{Q}
$$

Lagrange function:

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=p K+w L+\lambda(\bar{Q}-Q(K, L))
$$

First-order conditions:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial K}=p-\lambda Q_{K}(K, L)=0 \\
& \frac{\partial \mathcal{L}}{\partial L}=w-\lambda Q_{L}(K, L)=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\bar{Q}-Q(K, L)
\end{aligned}
$$

Note that here $Q_{K}=\frac{\partial Q}{\partial K}$ and $Q_{L}=\frac{\partial Q}{\partial L}$.

So optimal K and L satisfy:

$$
\text { (1). } \frac{Q_{K}\left(K^{*}, L^{*}\right)}{Q_{L}\left(K^{*}, L^{*}\right)}=\frac{p}{w}, \quad \text { (2). } \quad Q\left(K^{*}, L^{*}\right)=\bar{Q}
$$

Example 3: Inter-Temporal Utility Maximization

You are given the following inter-temporal utility function:

$$
\begin{equation*}
U=U\left(c_{1}, c_{2}\right)=\ln c_{1}+\beta \ln c_{2} \tag{4}
\end{equation*}
$$

where c_{1} and c_{2} is consumption in period 1 and 2 , respectively. $0<\beta<1$ is the rate at which you discount the future and it measures your impatient. You earn income $y_{1}>0$ in period 1 and income $y_{2}>0$ in period 2. Any of the income you save s in period 1 earns interest $r>0$. So,

$$
c_{1}+s=y_{1}, \quad c_{2}=y_{2}+(1+r) s
$$

Combining these constraints:

$$
c_{1}+\frac{1}{1+r} c_{2}=y_{1}+\frac{1}{1+r} y_{2}
$$

Let the present-discounted income be denoted by m, such that:

$$
m=y_{1}+\frac{1}{1+r} y_{2}
$$

You want to choose c_{1} and c_{2} to maximize utility $U\left(c_{1}, c_{2}\right)$ in equation (4) subject to the constraint:

$$
\begin{equation*}
c_{1}+\frac{1}{1+r} c_{2}=m \tag{5}
\end{equation*}
$$

Lagrangian function:

$$
L\left(c_{1}, c_{2}, \lambda\right)=\ln c_{1}+\beta \ln c_{2}+\lambda\left(m-c_{1}-\frac{1}{1+r} c_{2}\right)
$$

First order conditions:

$$
\begin{align*}
\frac{\partial L}{\partial c_{1}} & =\frac{1}{c_{1}^{*}}-\lambda^{*}=0 \tag{6}\\
\frac{\partial L}{\partial c_{2}} & =\frac{\beta}{c_{2}^{*}}-\frac{\lambda^{*}}{1+r}=0 \tag{7}\\
\frac{\partial L}{\partial \lambda} & =m-c_{1}^{*}-\frac{1}{1+r} c_{2}^{*}=0 \tag{8}
\end{align*}
$$

Note that from (6), $\lambda^{*}=1 / c_{1}^{*}$, plugging this in (7), we get:

$$
c_{2}^{*}=\beta(1+r) c_{1}^{*}
$$

Plugging this expression for c_{2}^{*} in (8):

$$
c_{1}^{*}+\frac{1}{1+r} \beta(1+r) c_{1}^{*}=m \rightarrow c_{1}^{*}=\frac{m}{1+\beta}
$$

In which case,

$$
c_{2}^{*}=\beta(1+r) c_{1}^{*}=\frac{\beta m(1+r)}{1+\beta}
$$

Finally, since $\lambda^{*}=1 / c_{1}^{*}$,

$$
\lambda^{*}=\frac{1}{c_{1}^{*}}=\frac{1+\beta}{m}
$$

Now suppose we are interested in knowing how utility changes due to changes in total
income. By the envelope theorem:

$$
\frac{\partial U^{*}}{\partial m}=\frac{\partial L^{*}}{\partial m}=\lambda^{*}=\frac{1+\beta}{m}
$$

Similarly, how utility changes due to a change in interest rate would be given by:

$$
\frac{\partial U^{*}}{\partial r}=\frac{\partial L^{*}}{\partial r}=\lambda^{*} \cdot \frac{1}{(1+r)^{2}} \cdot c_{2}^{*}=\frac{\beta}{1+r}
$$

