ECON 441

Introduction to Mathematical Economics

Div Bhagia

Midterm Review

Numbers, Sets, and

Functions

Sets

- \mathbb{R} is the set of real numbers (rational and irrational)
- $x \in \mathbb{R}$ to denote x belongs to the set of real numbers
- Consider the universe of all real numbers, set A is given by:

$$
A=\{x \mid x>0\}
$$

- What is the complement of A ?

Sets

- \mathbb{R} is the set of real numbers (rational and irrational)
- $x \in \mathbb{R}$ to denote x belongs to the set of real numbers
- Consider the universe of all real numbers, set A is given by:

$$
A=\{x \mid x>0\}
$$

- What is the complement of A ?

$$
A^{c}=\{x \mid x \leqslant 0\}
$$

Set Relations and Operations

Consider the following sets:

$$
\begin{aligned}
& A=\{x \mid x>0\} \\
& B=\{x \mid x \text { is a positive integer }\} \\
& C=\{x \mid 1<x<5\}
\end{aligned}
$$

- Is $A=B$? Is $B \subset A$?
- Are C and B disjoint sets?
- What is $A \cap B$? What about $A \cup B$?
- What is $B \cap C$?

Subsets

- \varnothing : empty or null set
- What are all possible subsets of

$$
\begin{gathered}
S=\{a, b, c\} \\
\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}
\end{gathered}
$$

Always 2^{n} subsets. Here $n=3$, so 8 subsets.

Set Operations: Venn Diagrams

Cartesian Product

$$
A=\{1,2\} \quad B=\{3,4\}
$$

Cartesian Product: set of all possible ordered pairs

$$
A \times B=\{(1,3),(1,4),(2,3),(2,4)\}
$$

Cartesian Plane

$$
\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}
$$

Can have $\mathbb{R}^{3}, \mathbb{R}^{4}, \ldots, \mathbb{R}^{n}$

Relations

Relation: subset of the Cartesian product
Example. $\{(x, y) \mid y \leqslant x\}$

Functions

Function: a relation where for each x there is a unique y

$$
f: X \rightarrow Y, \quad y=f(x)
$$

Examples. $y=x, y=x^{2}, y=2 x+3$
X : domain, Y : codomain, $f(X)$: range
Most functions we will encounter, $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$

Inverse of a function

Function $y=f(x)$ has an inverse if it is a one-to-one mapping, i.e. each value of y is associated with a unique value of x.

Inverse function

$$
x=f^{-1}(y)
$$

returns the value corresponding value of x for each y.
One-to-one mapping unique to strictly monotonic functions

$y=\exp (x)$

Logarithmic Function

Since the exponential function is a monotonic function, its inverse exists.

The inverse of the exponential function is called the log or logarithmic function.

For the natural exponential function:

$$
y=e^{t} \rightarrow \log _{e} y=\ln (y)
$$

$$
y=\ln (x)
$$

Rules for Logarithmic Functions

$$
\begin{aligned}
& \ln (u v)=\ln u+\ln v \\
& \ln (u / v)=\ln u-\ln v
\end{aligned}
$$

$$
\ln u^{a}=a \ln u
$$

Linear Algebra

Matrices

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]_{m \times n}
$$

Can write it more compactly

$$
A=\left[a_{i j}\right] \quad i=1,2, \ldots, m ; j=1,2, \ldots, n
$$

Square matrices: $m=n$

Matrices
Two matrices are equal if all their elements are identical.
Example.

$$
A=\left[\begin{array}{cc}
1 & 8 \\
4 & -1
\end{array}\right] \neq\left[\begin{array}{ll}
1 & 8 \\
4 & 2
\end{array}\right]
$$

So $A=B$ if and only if $a_{i j}=b_{i j}$ for all i, j

Matrix Addition and Subtraction

- How to add or take the difference between two matrices?
\rightarrow Element-by-element
\rightarrow Matrices have to have same dimension

Example.

$$
A=\left[\begin{array}{cc}
2 & 3 \\
4 & -6
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 8 \\
-2 & 3
\end{array}\right]
$$

- What is $A+B$ and $A-B$?

Scalar Multiplication

How to multiply a scalar to a matrix?

$$
\lambda\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=\left[\begin{array}{lll}
\lambda a_{11} & \lambda a_{12} & \lambda a_{13} \\
\lambda a_{21} & \lambda a_{22} & \lambda a_{23}
\end{array}\right]
$$

Example.

$$
A=\left[\begin{array}{cc}
2 & 3 \\
4 & -6
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 8 \\
-2 & 3
\end{array}\right]
$$

What is $2 B$ and $A-2 B$?

Matrix Multiplication

Only possible to multiply two matrices, $A_{m \times n}$ and $B_{p \times q}$ to get $A B$ if $n=p$ i.e.
number of columns in $A=$ number of rows in B

Example. $A=\left[\begin{array}{cc}2 & 3 \\ 4 & -6\end{array}\right]_{2 \times 2} B=\left[\begin{array}{ccc}1 & 8 & 1 \\ -2 & 3 & 1\end{array}\right]_{2 \times 3}$

Can do $A B$, but cannot do $B A$. Dimension of $A B$ is 2×3.

Matrix Multiplication

So how to actually multiply these matrices?

$$
\begin{gathered}
C=A B \\
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}
\end{gathered}
$$

Element $c_{i j}$ obtained by multiplying term-by-term the entries of the i th row of A and j th column of B.

Matrix Multiplication

$$
A=\left[\begin{array}{cc}
2 & 3 \\
4 & -6
\end{array}\right]_{2 \times 2} \quad B=\left[\begin{array}{ccc}
1 & 8 & 1 \\
-2 & 3 & 1
\end{array}\right]_{2 \times 3}
$$

Vectors

- Matrices with only one column: column vectors

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- Matrices with only one row: row vectors

$$
x^{\prime}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]
$$

Linear Dependence

A set of vectors is said to be linearly dependent if and only if any one of them can be expressed as a linear combination of the remaining vectors.

Example.

$$
v_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Identity Matrices

Square matrix with 1s in its principal diagonal and 0s elsewhere
A 2×2 identity matrix:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

A 3×3 identity matrix:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Identity Matrices

Acts like 1,

$$
A I=I A=A
$$

Example.

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & 2
\end{array}\right]
$$

Transpose of a Matrix

Transpose of A: interchange rows and columns (A^{\prime})

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & 2
\end{array}\right]
$$

Inverse of a Matrix

For a square matrix A, it's inverse A^{-1} is defined as:

$$
A A^{-1}=A^{-1} A=I
$$

Squareness is a necessary condition not a sufficient condition
If a matrix's inverse exists, it's called a nonsingular matrix

Conditions for Nonsingularity

Squareness is necessary but not sufficient
Sufficient condition for nonsingularity:
Rows or columns are linearly independent
Example.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Conditions for Nonsingularity

Squareness is necessary but not sufficient
Sufficient condition for nonsingularity:
Rows or columns are linearly independent
Example.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

A is singular, B is nonsingular.

Rank of a Matrix

Rank of a matrix = maximum number of linearly independent rows

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Rank of A ? Rank of B ?
Full rank = all rows linearly independent =nonsingular matrix

Determinant

Determinant $|A|$ is a unique scalar associated with a square matrix A.
$|A|=0$ for a singular matrix.
Determinant of a 2×2 Matrix:

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Can be calculated as:

$$
|A|=a_{11} a_{22}-a_{12} a_{21}
$$

Determinant of a $n \times n$ Matrix

A minor of the element $a_{i j}$, denoted by $\left|M_{i j}\right|$ is obtained by deleting the i th row and j th column.

Cofactor $C_{i j}$ is defined as:

$$
\left|C_{i j}\right|=(-1)^{i+j}\left|M_{i j}\right|
$$

Then,

$$
|A|=\sum_{i=1}^{n} a_{i j}\left|C_{i j}\right|=\sum_{j=1}^{n} a_{i j}\left|C_{i j}\right|
$$

Find the Determinant

$$
A=\left[\begin{array}{ccc}
1 & 5 & 1 \\
0 & 3 & 9 \\
-1 & 0 & 0
\end{array}\right]
$$

Matrix Inversion
Adjoint of a nonsingular $n \times n$ matrix

$$
\begin{gathered}
\operatorname{adj} A=C^{\prime}=\left[\begin{array}{llll}
\left|C_{11}\right| & \left|C_{21}\right| & \ldots & \left|C_{n 1}\right| \\
\left|C_{12}\right| & \left|C_{22}\right| & \ldots & \left|C_{n 2}\right| \\
\vdots & \vdots & \ldots & \vdots \\
\left|C_{1 n}\right| & \left|C_{2 n}\right| & \ldots & \left|C_{n n}\right|
\end{array}\right] \\
A^{-1}=\frac{1}{|A|} A d j A
\end{gathered}
$$

Find the Inverse

$$
A=\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right]
$$

A Simple Economic Model

Two equations in two unknowns:

$$
\begin{aligned}
& q+2 p=100 \\
& q-3 p=20
\end{aligned}
$$

Can write this as:

$$
A x=b
$$

where

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

Solution of Linear-Equation System

$$
A x=b
$$

Pre-multiply both sides by A^{-1},

$$
A^{-1} A x=A^{-1} b \quad \Longrightarrow x=A^{-1} b
$$

What happens if A is singular? Infinite solutions.

Calculus

Differentiability and Continuity

$f^{\prime}\left(x_{0}\right)$ exists if the following limit exists:

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

A function $y=f(x)$ is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Continuity is a necessary condition for differentiability, but it is not sufficient.

So how to differentiate functions?

Rules of differentiation, easier than taking the limit each time
Constant function rule:
For function $f(x)=k, f^{\prime}(x)=0$.
Power function rule:
For function $f(x)=x^{n}, f^{\prime}(x)=n x^{n-1}$.
Generalized power function rule: For function $f(x)=c x^{n}, f^{\prime}(x)=c n x^{n-1}$.

Derivatives of Exponential and Logarithmic Functions

Derivative of the exponential function:

$$
y=e^{x} \quad \rightarrow \quad \frac{d y}{d x}=e^{x}
$$

Derivative of the log function:

$$
y=\ln x \quad \rightarrow \quad \frac{d y}{d x}=\frac{1}{x}
$$

Rules of Differentiation

Two or more functions of one variable
Sum-Difference Rule

$$
\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)
$$

Product Rule

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

Rules of Differentiation

Two or more functions of one variable
Quotient Rule

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Inverse Function Rule

$$
\frac{d x}{d y}=\frac{1}{d y / d x}
$$

Rules of Differentiation

Functions of Different Variables

Chain Rule

$$
\begin{aligned}
& \text { For } z=f(y), \quad y=g(x) \\
& \qquad \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}=f^{\prime}(y) g^{\prime}(x)
\end{aligned}
$$

Example

Total cost: $C=C(Q)$
Marginal cost: $M C=C^{\prime}(Q)$
Average cost:

$$
A C=\frac{C(Q)}{Q}
$$

When is $\frac{d A C}{d Q}$ positive?

Example

Revenue: $R=f(Q), \quad f^{\prime}(Q)>0$
Output: $Q=g(L), \quad g^{\prime}(L)>0$
Change in revenue due to labor adjustment:

$$
\frac{d R}{d L}=\frac{d R}{d Q} \cdot \frac{d Q}{d L}=f^{\prime}(Q) g^{\prime}(L)
$$

Elasticity

Elasticity is defined as:

$$
\varepsilon=\frac{\text { Percentage change in } y}{\text { Percentage change in } x}=\frac{d y / y}{d x / x}
$$

We can calculate this as:

$$
\varepsilon=\frac{d y}{d x} \cdot \frac{x}{y}
$$

Elasticity

Elasticity:

$$
\varepsilon=\frac{d y}{d x} \cdot \frac{x}{y}
$$

- $|\varepsilon|>1$, elastic
- $|\varepsilon|=1$, unit elasticity
- $|\varepsilon|<1$, inelastic

Example

$$
C=a+b Y
$$

Partial Differentiation

For a function of several variables:

$$
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

If x_{1} changes by Δx_{1} but all other variables remain constant:

$$
\frac{\Delta y}{\Delta x_{1}}=\frac{f\left(x_{1}+\Delta x_{1}, x_{2}, \cdots, x_{n}\right)-f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\Delta x_{1}}
$$

Partial derivative of y with respect to x_{i} :

$$
\frac{\partial y}{\partial x_{i}}=f_{i}=\lim _{\Delta x_{i} \rightarrow 0} \frac{\Delta y}{\Delta x_{i}}
$$

Production Function

$$
Q=A K^{\alpha} L^{1-\alpha}
$$

Marginal product of capital (MPK):

$$
\frac{\partial Q}{\partial K}=Q_{K}=
$$

Marginal product of labor (MPL):

$$
\frac{\partial Q}{\partial L}=Q_{L}=
$$

Total Derivative

For a function of n variables

$$
\begin{gathered}
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
\frac{d f}{d t}=f_{1} \cdot \frac{d x_{1}}{d t}+f_{2} \cdot \frac{d x_{2}}{d t}+\cdots+f_{n} \cdot \frac{d x_{n}}{d t}
\end{gathered}
$$

Total Derivative

Given the function

$$
y=f\left(x_{1}, x_{2}\right)
$$

We are interested in how y changes with respect to x_{1}, but x_{2} also depends of x_{1}

$$
x_{2}=g\left(x_{1}\right)
$$

Total derivative with respect to x_{1} :

$$
\frac{d y}{d x_{1}}=f_{1}+f_{2} \cdot g^{\prime}\left(x_{1}\right)
$$

Example

Let a production function be

$$
Q(t)=A(t) K(t)^{\alpha} L(t)^{1-\alpha}
$$

where

$$
K(t)=K_{0}+a t \quad L(t)=L_{0}+b t
$$

Gradient

For the function:

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

The gradient is given by

$$
\nabla f=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right]
$$

Derivatives of Implicit Functions

Total differentiating F, we have $d F=0$, or

$$
F_{y} d y+F_{1} d x_{1}+\cdots+F_{n} d x_{n}=0
$$

Suppose that only y and x_{1} are allowed to vary:

$$
\frac{\partial y}{\partial x_{1}}=-\frac{F_{1}}{F_{y}}
$$

In the simple case where the given equation is $F(y, x)=0$, the rule gives

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} .
$$

Example

$$
Y=\beta_{0}+\beta_{1} \ln X+u
$$

What is the interpretation of β_{1} ?

Few last words

- Sample exam, midterm exams from previous semesters, and help sheet on course website
- Note: We skipped integration so ignore slides after slide 15 in Lecture 7 and homework problems from chapter 14.
- Good luck for the exam!

