Homework 9 Solutions

Exercise 11.2

1. $z=x^{2}+x y+2 y^{2}+3$
F.O.C:
$f_{x}=2 x+y=0$
$f_{y}=x+4 y=0$
To solve the above system, plug in $x=-4 y$ in the first equation.

$$
2 x+y=-8 y+y=0
$$

Critical point: $(0,0)$
S.O.C:
$f_{x x}=2>0$
$f_{y y}=4>0$
$f_{x y}=1$
$f_{x x} f_{y y}=8>1=f_{x y}^{2}$
f has a local minimum at $(0,0)$.
2. $z=-x^{2}-y^{2}+6 x+2 y$
F.O.C:
$f_{x}=-2 x+6=0$
$f_{y}=-2 y+2=0$

Critical point: $(3,1)$
S.O.C:

$$
\begin{aligned}
f_{x x} & =-2<0 \\
f_{y y} & =-2<0 \\
f_{x y} & =0 \\
f_{x x} f_{y y} & =4>0=f_{x y}^{2}
\end{aligned}
$$

f has a local maximum at $(3,1)$.
3. $z=a x^{2}+b y^{2}+c$

FOC :

$$
\begin{aligned}
& f_{x}=2 a x=0 \\
& f_{y}=2 b y=0
\end{aligned}
$$

Critical point : $(0,0)$
SOC :

$$
\begin{aligned}
& f_{x x}=2 a \\
& f_{y y}=2 b \\
& f_{x y}=0 \\
& f_{x x} f_{y y}=4 a b
\end{aligned}
$$

(a) $a>0, b>0$

$$
\begin{aligned}
& f_{x x}>0, f_{y y}>0 \\
& f_{x x} f_{y y}=4 a b>0=f_{x y}^{2}
\end{aligned}
$$

Local minimum.
(b) $a<0, b<0$

$$
\begin{aligned}
& f_{x x}<0, f_{y y}<0 \\
& f_{x x} f_{y y}=4 a b>0=f_{x y}^{2}
\end{aligned}
$$

Local maximum.

(c) $\quad a>0, \quad b<0$
$f_{x x}>0, f_{y y}<0$
Neither maximum nor minimum.
4. $z=e^{2 x}-2 x+2 y^{2}+3$

FOC:

$$
\begin{aligned}
& f_{x}=2 e^{2 x}-2=0 \rightarrow e^{2 x}=1 \rightarrow 2 x=\ln 1=0 \\
& f_{y}=4 y=0
\end{aligned}
$$

Critical point: $(0,0)$
SOC:

$$
\begin{aligned}
& f_{x x}=4 e^{2 x} \rightarrow f_{x x}(0,0)=4 \\
& f_{y y}=4 \\
& f_{x y}=0
\end{aligned}
$$

At $(0,0)$:

$$
\begin{aligned}
& f_{x x}>0, f_{y y}>0 \\
& f_{x x} f_{y y}=16>0=f_{x y}^{2} \rightarrow \text { local minimum }
\end{aligned}
$$

5. $z=(x-2)^{4}+(y-3)^{4}$
(a) First note that $z \geqslant 0$ as square terms are always positive.

Since, $f(2,3)=0, z$ takes minimum value at $x^{*}=2 \& y^{*}=3$.
(b) $f_{x}=4(x-2)^{3} \rightarrow f_{x}(2,3)=0$
$f_{y}=4(y-3)^{3} \rightarrow f_{y}(2,3)=0$
Yes, FOC is satisfied.

$$
\begin{aligned}
& \text { (c) } \begin{array}{l}
f_{x x}(2,3)=12(x-2)^{2} \rightarrow f_{x x}(2,3)=0 \\
f_{y y}(2,3)=12(y-3)^{2} \rightarrow f_{y y}(2,3)=0 \\
f_{x y}=0
\end{array}
\end{aligned}
$$

SOC is not satisfied.
Yes, the second-order necessary condition is satisfied.

