Homework 8 Solutions

Exercise 9.2

1. (c) $y=3 x^{2}+3$

$$
\frac{d y}{d x}=6 x=0 \rightarrow x^{*}=0
$$

In the immediate neighborhood of 0 , for $x<0$, $\frac{d y}{d x}<0$, while for $x>0, \frac{d y}{d x}>0$. This implies that at 0 , the slope of the function changes sign from negative to positive i.e. the function was decreasing on the left of 0 but is increasing on the right. So it must be that the function has a relative minimum $(f(0)=3)$ at $x=0$. We can also confirm this by looking at the 2nd derivative:

$$
\frac{d^{2} y}{d x^{2}}=6>0
$$

The graph of this function is given below:

2. (a) $y=x^{3}-3 x+5$

$$
\frac{d y}{d x}=3 x^{2}-3=0 \rightarrow x^{*}= \pm \sqrt{1}
$$

So, we have two critical values $x_{1}^{*}=1$ and $x_{2}^{*}=-1$.

The derivative of the function, $3\left(x^{2}-1\right)$, is negative on the immediate left of 1 (e.g. 0.9) and is positive on the immediate right of 1 (e.g. 1.1). While it is positive on the immediate left of -1 (e.g. -1.1) but negative on the right (e.g. -0.9). So the function should have a relative minimum at 1 and a relative maximum at -1 . However, the domain of this function is limited to positive real numbers, in which case -1 is not permissible. So we only have a relative minimum $f(1)=3$.

The graph (solid line) of this function is given below:

We could have also reached the above conclusion from the second derivative test.

$$
\frac{d^{2} y}{d x^{2}}=6 x
$$

$\frac{d^{2} y}{d x^{2}}>1$ when $x=1 \rightarrow 1$ relative minimum at 1
$\frac{d^{2} y}{d x^{2}}<0$ when $x=-1 \rightarrow-1$ relative maximum at -1
3. $f(x)=x+\frac{1}{x}$

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}=0 \rightarrow x^{*}= \pm 1
$$

The derivative of the function, $\left(x^{2}-1\right) / x^{2}$, is negative on the immediate left of 1 (e.g. 0.9) and is positive on the immediate right of 1 (e.g. 1.1). While it is positive on the immediate left of -1 (e.g. -1.1) but negative on the right (e.g. -0.9). So the function should have a relative minimum at 1 and a relative maximum at -1 .

$$
\begin{aligned}
& f(1)=2 \\
& f(-1)=-2
\end{aligned}
$$

Here, the relative maximum $f(-1)=0$ is lower than the relative minimum $f(1)=$ 2. However, it is still correct as these are just relative extrema. The graph for this function clarifies this notion.

4. $T=\phi(x)$
(a) $M=\phi^{\prime}(x)$
(b) $A=\phi(x) / x$
(c) Critical point:

$$
A^{\prime}=\frac{\phi^{\prime}(x) x-\phi(x)}{x^{2}}=0 \rightarrow \phi^{\prime}\left(x^{*}\right)=\frac{\phi\left(x^{*}\right)}{x^{*}}
$$

(d) Elasticity of T :

$$
\varepsilon=\frac{\phi^{\prime}(x) x}{\phi(x)}=\frac{M}{A}
$$

When $M=A \rightarrow \varepsilon=1$

Exercise 9.3

2. (a) $f(x)=9 x^{2}-4 x+8$

$$
\begin{aligned}
& f^{\prime}(x)=18 x-4 \\
& f^{\prime \prime}(x)=18>0
\end{aligned}
$$

The function is strictly convex.
(b) $w=-3 x^{2}+39$

$$
\begin{aligned}
& \frac{d w}{d x}=-6 x \\
& \frac{d^{2} w}{d x^{2}}=-6<0
\end{aligned}
$$

The function is strictly concave.
(c) $u=9-2 x^{2}$

$$
\begin{aligned}
& f^{\prime}(x)=-4 x \\
& f^{\prime \prime}(x)=-4<0
\end{aligned}
$$

The function is strictly concave.
(d) $v=8-5 x+x^{2}$

$$
\begin{aligned}
& \frac{d v}{d x}=-5+2 x \\
& \frac{d^{2} v}{d x^{2}}=2>0
\end{aligned}
$$

The function is strictly convex.
3. (a) Concave but not strictly concave

(b) Concave and convex

4. We are given the following function:

$$
y=a-\frac{b}{c+x} \quad(a, b, c>0, x \geqslant 0)
$$

(a)

$$
\begin{gathered}
\frac{d y}{d x}=\frac{b}{(c+x)^{2}}>0 \\
\frac{d^{2} y}{d x^{2}}=\frac{-b}{(c+x)^{4}} \cdot 2(c+x)
\end{gathered}
$$

$$
=\frac{-2 b}{(c+x)^{3}}<0
$$

(b) When $x=0$,

$$
y=a-\frac{b}{c}
$$

(c) As $x \rightarrow \infty, y \rightarrow a$

We should restrict $a c>b$ to ensure consumption is positive. We should also make sure consumption (y) does not increase more than one-to-one with income (x), such that $d y / d x<1$, so $b<c^{2}$.

$f(x)$ has infinitely many stationary points, while $g(x)$ has one stationary point 3.

Exercise 9.4

1. (b)

$$
\begin{aligned}
f(x) & =x^{3}+6 x^{2}+9 \\
f^{\prime}(x) & =3 x^{2}+12 x \\
& =3 x(x+4) \rightarrow x^{*}=0,-4 \\
f^{\prime \prime}(x) & =6 x+12 \\
f^{\prime \prime}(0) & =12>0 \rightarrow f(0)=9 \text { is a local min } \\
f^{\prime \prime}(-4) & =-24+12=-12 \rightarrow f(-4)=41 \text { is a local } \max
\end{aligned}
$$

2.

$$
\begin{aligned}
& A=x y \\
& 2 x+y=64 \rightarrow y=64-2 x \\
& A=x(64-2 x)=64 x-2 x^{2} \\
& \frac{d A}{d x}=64-4 x \rightarrow x^{*}=16
\end{aligned}
$$

To see if it is indeed the maximum:

$$
\frac{d^{2} A}{d x^{2}}=-4<0
$$

3. (a) Yes
(b)

$$
\begin{aligned}
R=P Q & =(100-Q) Q \\
& =100 Q-Q^{2}
\end{aligned}
$$

(c) $\pi=R-C$

$$
\begin{gathered}
=100 Q-Q^{2}-\frac{1}{3} Q^{3}+7 Q^{2}-111 Q-50 \\
=-\frac{1}{3} Q^{3}+6 Q^{2}-11 Q-50
\end{gathered}
$$

(d) $\frac{d \pi}{d Q}=-Q^{2}+12 Q-11=0$

$$
\begin{gathered}
Q^{2}-12 Q+11=0 \\
Q^{2}-11 Q-Q+11=0 \\
Q(Q-11)-1(Q-11)=0 \\
(Q-1)(Q-11)=0 \rightarrow Q^{*}=1 \text { and } 11 \\
\frac{d^{2} \pi}{d Q^{2}}=-2 Q+12
\end{gathered}
$$

At $Q=1,-2+12=10>0$
At $Q=11,-22+12=-10<0$, so profit maximizing $Q=11$.
(e)

$$
\begin{aligned}
\pi= & -\frac{1}{3} Q^{3}+6 Q^{2}-11 Q-50 \\
= & Q\left[Q\left[-\frac{1}{3} Q+6\right]-11\right]-50 \\
\operatorname{Max} \pi= & 11\left[11\left(6-\frac{11}{3}\right)-11\right]-50 \\
& 11\left(11 \times\left(\frac{7}{3}-1\right)\right]-50=40.75
\end{aligned}
$$

5. Profit function:

$$
\pi(Q)=h Q^{2}+j Q+k
$$

(a) $\pi(0)=k<0$
(b) $\pi^{\prime}(Q)=2 h Q+j, \quad \pi^{\prime \prime}(Q)=2 h<0 \rightarrow h<0$
(c) Critical point: $\pi^{\prime}(Q)=2 h Q+j=0 \rightarrow Q^{*}=-j / 2 h$. Since we assumed $h<0$, assuming $j>0$ ensures $Q^{*}>0$.

