ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 8: Unconstrained Single Variable Optimization, Concave \& Convex Functions

Optimization

How many hours to work each week?
Utility from consumption (C) and leisure (L):

$$
U(C, L)
$$

Leisure is the difference between total hours (T) and hours worked (H)

$$
L=T-H
$$

Constraint:

$$
w H=p C
$$

where w and p denote wages and price, respectively.

Global vs Local Extrema

Critical Points

Limit ourselves to functions that are continuously differentiable i.e. f is continuous and has a continuous derivative.

$$
y=f(x)
$$

A necessary condition for x_{0} to be an extremum

$$
f^{\prime}\left(x_{0}\right)=0
$$

x_{0} is called a critical/stationary point.
Why not sufficient?

Inflection Point

First-Derivative Test

Suppose that $f^{\prime}\left(x_{0}\right)=0$. Then $f\left(x_{0}\right)$ is a

1. maximum if $f^{\prime}(x)$ goes from + to - in the immediate neighborhood of x_{0}
2. minimum if $f^{\prime}(x)$ goes from - to + in the immediate neighborhood of x_{0}
3. not an extreme point if $f^{\prime}(x)$ has the same sign in its immediate neighborhood

First-Derivative Test

Example

Let's find the extrema for the following function:

$$
f(x)=x^{2}-24 x+36
$$

Example

Total cost:

$$
T C=C(Q)
$$

Marginal cost:

$$
M C=C^{\prime}(Q)
$$

Average cost:

$$
A C=\frac{C(Q)}{Q}
$$

At what quantity is $A C$ the lowest?

Average and Marginal Cost

Second and Higher Derivatives

The derivative of $f^{\prime}(x)$ is called the second derivative and is denoted by:

$$
f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}
$$

Similarly, we can obtain other higher-order derivatives:

$$
f^{3}(x), f^{(4)}(x), \cdots, f^{(n)}(x)
$$

or

$$
\frac{d^{3} y}{d x^{3}}, \frac{d^{4} y}{d x^{4}}, \cdots, \frac{d^{n} y}{d x^{n}}
$$

Second Derivative

With an infinitesimal increase in x from x_{0}

- Value of the function increases if $f^{\prime}\left(x_{0}\right)>0$
- Value of the function decreases if $f^{\prime}\left(x_{0}\right)<0$
- Slope of the function increases if $f^{\prime \prime}\left(x_{0}\right)>0$
- Slope of the function decreases if $f^{\prime \prime}\left(x_{0}\right)<0$

Second Derivative Test

If $f^{\prime}\left(x_{0}\right)=0$, then the value of the function at $x_{0}, f\left(x_{0}\right)$ will be

1. a maximum if $f^{\prime \prime}\left(x_{0}\right)<0$
2. a minimum if $f^{\prime \prime}\left(x_{0}\right)>0$

More convenient to use than the first-derivative test.

Necessary vs Sufficient Conds.

Condition

Maximum

Minimum

First-order necessary

$$
f^{\prime}(x)=0
$$

$f^{\prime}(x)=0$
$\begin{array}{ll}\text { Second-order necessary }{ }^{\dagger} & f^{\prime \prime}(x) \leqslant 0\end{array} \quad f^{\prime \prime}(x) \geqslant 0$
${ }^{\dagger}$ Applicable only after the first-order necessary condition has been satisfied.

Necessary vs Sufficient Conds.

$$
y=x^{4}
$$

Concave and Convex Functions

- Concave function: $f^{\prime \prime}(x) \leqslant 0$ for all x
- Convex function: $f^{\prime \prime}(x) \geqslant 0$ for all x
- Strictly concave function: $f^{\prime \prime}(x)<0$ for all x
- Strictly convex function: $f^{\prime \prime}(x)>0$ for all x

Concave and Convex Functions

f is concave if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

f is covex if:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leqslant \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

where $\lambda \in(0,1)$.
For strict concavity/convexity replace with strict inequalities.

Concave Function

Convex Function

Attitudes toward Risk

Consider the following game: flip a coin, collect $\$ 0$ if tails, collect $\$ 20$ if heads.

How much would you pay to play this game?

Concave and Convex Functions

The domain of f is all real numbers

$$
f(x)=x^{3}
$$

Is f a convex, strictly convex, concave, or strictly concave function?

What if the domain of f is all nonnegative real numbers?
$f(x)=x^{3}$

Properties of Concave and Covex Functions

1. If $f(x)$ is a linear function, then it is a concave function as well as a convex function, but not strictly so.
2. If $f(x)$ is a (strictly) concave function, then $-f(x)$ is a (strictly) convex function, and vice versa.
3. If $f(x)$ and $g(x)$ are both concave (convex) functions, then $f(x)+g(x)$ is a concave (convex) function. Further, in addition, either one or both of them are strictly concave (strictly convex), then $f(x)+g(x)$ is strictly concave (convex).

Global Optimizers

- If a function is concave, any critical point will give us a global maximum.
- If a function is strictly concave, any critical point will give us the unique global maximum.
- If a function is convex, any critical point will give us a global minimum.
- If a function is strictly convex, any critical point will give us the unique global minimum.

Concave and Convex Functions

Say, $f(x)$ is a strictly concave function and

$$
f^{\prime}(2)=0
$$

Is $f(2)$ the local or global maximum? Is it the unique maximum?

References and Homework

- Covered today: Sections 9.1, 9.2, 9.3, 9.4
- Homework problems:
- Exercise 9.2: 1 (c), 2 (a), 3, 4
- Exercise 9.3: 2, 3, 4, 5
- Exercise 9.4: 1 (b) (d), 2, 3, 5

