

Introduction to Mathematical Economics

Div Bhagia

Lecture 8: Unconstrained Single Variable Optimization, Concave & Convex Functions

Optimization

How many hours to work each week?

Utility from consumption (*C*) and leisure (*L*):

U(C,L)

Leisure is the difference between total hours (*T*) and hours worked (*H*)

$$L = T - H$$

Constraint:

$$wH = pC$$

where *w* and *p* denote wages and price, respectively.

Global vs Local Extrema

Critical Points

Limit ourselves to functions that are *continuously differentiable* i.e. *f* is continuous and has a continuous derivative.

$$y = f(x)$$

A *necessary* condition for x_0 to be an extremum

$$f'(x_0)=0$$

 x_0 is called a critical/stationary point.

Why not sufficient?

Inflection Point

First-Derivative Test

Suppose that $f'(x_0) = 0$. Then $f(x_0)$ is a

- 1. maximum if f'(x) goes from + to in the immediate neighborhood of x_0
- 2. minimum if f'(x) goes from to + in the immediate neighborhood of x_0
- 3. not an extreme point if f'(x) has the same sign in its immediate neighborhood

First-Derivative Test

6 / 25

Let's find the extrema for the following function:

$$f(x) = x^2 - 24x + 36$$

Total cost:

$$TC = C(Q)$$

Marginal cost:

$$MC = C'(Q)$$

Average cost:

$$AC = \frac{C(Q)}{Q}$$

At what quantity is AC the lowest?

Average and Marginal Cost

9 / 25

Second and Higher Derivatives

The derivative of f'(x) is called the second derivative and is denoted by:

$$f''(x) = \frac{d^2y}{dx^2}$$

Similarly, we can obtain other higher-order derivatives:

$$f^{3}(x), f^{(4)}(x), \cdots, f^{(n)}(x)$$

or

$$\frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}, \cdots, \frac{d^ny}{dx^n}$$

Second Derivative

With an infinitesimal increase in x from x_0

- Value of the function increases if $f'(x_0) > 0$
- Value of the function decreases if $f'(x_0) < 0$

- *Slope* of the function increases if $f''(x_0) > 0$
- *Slope* of the function decreases if $f''(x_0) < 0$

Second Derivative Test

If $f'(x_0) = 0$, then the value of the function at x_0 , $f(x_0)$ will be

- **1.** a maximum if $f''(x_0) < 0$
- 2. a minimum if $f''(x_0) > 0$

More convenient to use than the first-derivative test.

Necessary vs Sufficient Conds.

_

Condition	Maximum	Minimum
First-order necessary	f'(x) = 0	f'(x) = 0
Second-order necessary †	$f''(x) \leq 0$	$f''(x) \ge 0$
Second-order sufficient †	f''(x) < 0	f''(x) > 0

[†] Applicable only after the first-order necessary condition has been satisfied.

Necessary vs Sufficient Conds.

$$y = x^4$$

Concave and Convex Functions

- Concave function: $f''(x) \leq 0$ for all x
- Convex function: $f''(x) \ge 0$ for all x

- Strictly concave function: f''(x) < 0 for all x
- Strictly convex function: f''(x) > 0 for all x

Concave and Convex Functions

f is concave if:

$$f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2)$$

f is covex if:

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

where $\lambda \in (0, 1)$.

For strict concavity/convexity replace with strict inequalities.

Concave Function

Convex Function

Attitudes toward Risk

Consider the following game: flip a coin, collect \$0 if tails, collect \$20 if heads.

How much would you pay to play this game?

Concave and Convex Functions

The domain of *f* is all real numbers

$$f(x) = x^3$$

Is *f* a convex, strictly convex, concave, or strictly concave function?

What if the domain of *f* is all nonnegative real numbers?

21 / 25

Properties of Concave and Covex Functions

1. If f(x) is a linear function, then it is a concave function as well as a convex function, but not strictly so.

2. If f(x) is a (strictly) concave function, then -f(x) is a (strictly) convex function, and vice versa.

3. If f(x) and g(x) are both concave (convex) functions, then f(x) + g(x) is a concave (convex) function. Further, in addition, either one or both of them are strictly concave (strictly convex), then f(x) + g(x) is strictly concave (convex).

Global Optimizers

- If a function is concave, any critical point will give us a global maximum.
- If a function is strictly concave, any critical point will give us the *unique* global maximum.
- If a function is convex, any critical point will give us a global minimum.
- If a function is strictly convex, any critical point will give us the *unique* global minimum.

Concave and Convex Functions

Say, f(x) is a strictly concave function and

$$f'(2) = 0$$

Is f(2) the local or global maximum? Is it the unique maximum?

References and Homework

- Covered today: Sections 9.1, 9.2, 9.3, 9.4
- Homework problems:
 - Exercise 9.2: 1 (c), 2 (a), 3, 4
 - Exercise 9.3: 2, 3, 4, 5
 - Exercise 9.4: 1 (b) (d), 2, 3, 5