Single Variable Unconstrained Optimization

A point x_{0} is a critical/stationary point if $f^{\prime}\left(x_{0}\right)=0$.

Find all the critical points for the following function:

$$
f(x)=x^{3}-12 x^{2}+36 x+8
$$

Denote the two critical points by x_{1}^{*} and x_{2}^{*}.

- What is the sign of $f^{\prime}(x)$ for $x<x_{1}^{*}$ in the immediate neighborhood of x_{1}^{*} ?
- What is the sign of $f^{\prime}(x)$ for $x>x_{1}^{*}$ in the immediate neighborhood of x_{1}^{*} ?
- What is the sign of $f^{\prime}(x)$ for $x<x_{2}^{*}$ in the immediate neighborhood of x_{2}^{*} ?
- What is the sign of $f^{\prime}(x)$ for $x<x_{2}^{*}$ in the immediate neighborhood of x_{2}^{*} ?

What are the maximum and minimum points for this function? Draw a graph for this function.

The second derivative of a function $f(x)$ is the derivative of $f^{\prime}(x)$.

Find the second derivative of the above function. What is the value of $f^{\prime \prime}(x)$ at x_{1}^{*} and x_{2}^{*} ?

Given the quadratic profit function

$$
\pi(Q)=h Q^{2}+j Q+k
$$

What parameter restrictions are called for to reflect the following assumptions:
(a). If nothing is produced, the profit will be negative (because of fixed costs).
(b). The profit function is strictly concave ($\pi^{\prime \prime}(Q)<0$ for all Q).
(c). The maximum profit occurs at a positive output level Q^{*}.

