ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 7: Calculus

Elasticity

Demand curve:

$$
Q(p)=\frac{c}{p^{\alpha}}
$$

Partial Elasticities

Production function:

$$
F(K, L)=A K^{\alpha} L^{\beta}
$$

Find $\varepsilon_{Q K}$ and $\varepsilon_{Q L}$.

Total Differential

For a function of n variables

$$
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Total differential:

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}=\sum_{i=1}^{n} f_{i} d x_{i}
$$

I am using ∂ to differentiate partial derivatives from total derivatives. In particular,

$$
\frac{\partial f}{\partial x_{i}}=\left.\frac{d f}{d x_{i}}\right|_{\text {other variables are constant }}
$$

Total Derivative

For a function of n variables

$$
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

$$
\frac{d f}{d t}=f_{1} \cdot \frac{d x_{1}}{d t}+f_{2} \cdot \frac{d x_{2}}{d t}+\cdots+f_{n} \cdot \frac{d x_{n}}{d t}
$$

Total Derivative

Given the function

$$
y=f\left(x_{1}, x_{2}\right)
$$

We are interested in how y changes with respect to x_{1}, but x_{2} also depends of x_{1}

$$
x_{2}=g\left(x_{1}\right)
$$

Total derivative with respect to x_{1} :

$$
\frac{d y}{d x_{1}}=f_{1}+f_{2} \cdot g^{\prime}\left(x_{1}\right)
$$

Example

Utility from consumption (C) and leisure hours (L).

$$
U=U(C, L)=\ln C+\ln L
$$

Budget constraint: $C=w(T-L)$ where w is the hourly wage and T is total hours. How does utility change due to change in leisure hours?

Implicit Functions

Explicit function:

$$
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Implicit function:

$$
F\left(y, x_{1}, x_{2}, \cdots, x_{n}\right)=0
$$

Example

Implicit function:

$$
F(x, y)=y-3 x^{2}=0
$$

Corresponding explicit function:

$$
y=f(x)=3 x^{2}
$$

However, not all implicit functions have a corresponding explicit function. E.g. $F(x, y)=x^{2}+y^{2}-9=0$

Implicit Function Theorem

Given,

$$
F(x, y)=0
$$

If the following conditions are met:

- F_{y} and F_{x} are continuous, and
- At some point $(a, b), F_{y}$ is non-zero

Then in a neighborhood around (a, b), an implicit function exists. Moreover, this function is continuous and has continuous partial derivatives.

Derivatives of Implicit Functions

Total differentiating F, we have $d F=0$, or

$$
F_{y} d y+F_{1} d x_{1}+\cdots+F_{n} d x_{n}=0
$$

Suppose that only y and x_{1} are allowed to vary:

$$
\frac{\partial y}{\partial x_{1}}=-\frac{F_{1}}{F_{y}}
$$

In the simple case where the given equation is $F(y, x)=0$, the rule gives

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

Example

Given the following function, let's find $\partial y / \partial x$ and $\partial y / \partial z$.

$$
F(x, y, z)=x^{3} z^{2}+y^{3}+4 x y z=0
$$

Another Example

Estimate the following model for demand for fast food:

$$
\text { orders }=\beta_{0}+\beta_{1} \text { price }+\beta_{2} \text { quality }+\varepsilon
$$

What is the interpretation of β_{1} ?

Another Example (cont.)

What if instead we estimate:

$$
\ln (\text { orders })=\beta_{0}+\beta_{1} \ln (\text { price })+\beta_{2} \text { quality }+\varepsilon
$$

What is the interpretation of β_{1} ?

Another related example

Production function:

$$
Y=A L^{\alpha} K^{\beta}
$$

To estimate the elasticities from data:

$$
\ln Y=\ln A+\alpha \ln L+\beta \ln K+\varepsilon
$$

Find the Derivative by Taking the Log

$$
\text { Demand: } \quad Q(p)=\frac{c}{p^{\alpha}}
$$

Integral Calculus

Inverse of Differentiation

Path of population over time:

$$
P(t)=2 t^{0.5}
$$

Rate of change of population:

$$
P^{\prime}(t)=\frac{d P}{d t}=t^{-0.5}
$$

But what if instead we were given $P^{\prime}(t)$ and were tasked with finding $P(t)$.

Inverse of Differentiation

Note that,

$$
P^{\prime}(t)=\frac{d P}{d t}=t^{-0.5}
$$

is the derivative of $P(t)=2 t^{0.5}$, but also of $P(t)=2 t^{0.5}+30$.
Generally, at best, we can find the following from just $P^{\prime}(t)$:

$$
P(t)=2 t^{0.5}+c
$$

However, if we have an initial condition such as $P(0)=50$, we can also find c.

Integration

- Integration is the reverse of differentiation
- If $f(x)$ is the derivative of $F(x)$, we can integrate $f(x)$ to find $F(x)$

$$
\frac{d}{d x} F(x)=f(x) \Rightarrow \int f(x) d x=F(x)+c
$$

- Rules of integration follow from rules of differentiation

Rules of Integration

Power Rule

$$
\int x^{n} d x=\frac{1}{n+1} \cdot x^{n+1}+c \quad(n \neq-1)
$$

Examples:

$$
\int x^{3} d x, \quad \int x d x, \quad \int 1 d x
$$

Rules of Integration

Exponential Rule

$$
\int e^{x} d x=e^{x}+c
$$

Log Rule

$$
\int \frac{1}{x} d x=\ln x+c \quad(x>0)
$$

Rules of Integration

Integral of a sum

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

Integral of a multiple

$$
\int k f(x) d x=k \int f(x) d x
$$

Example:

$$
\int\left(x^{2}+3 x+1\right) d x
$$

Definite Integrals

Definite integral:

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

Example:

$$
\int_{1}^{3} 2 x^{2}=
$$

Area under the curve

Area under the curve

References and Homework

- References: Sections 8.5 and Sections 14.1-14.3
- Homework problems:
- Ex 8.5: 1, 2(d), 3 (a)
- Ex 14.2: 1 (a), (c), (d)
- Ex 14.3: 1 (a) (e), 2 (a) (d), 5
- Next week: Review class
- Midterm is in two weeks

