Homework 6 Problems

Exercise 10.5

1. Find the derivatives of:
(a) $y=e^{2 t+4}$
(b) $y=e^{1-9 t}$
(C) $y=e^{t^{2}+1}$
(d) $y=5 e^{2-t^{2}}$
(e) $y=e^{a x^{2}+b x+c}$
(f) $y=x e^{x}$
(g) $y=x^{2} e^{2 x}$
(h) $y=a x e^{b x+c}$
2. Find the derivatives of:
(a) $y=\ln \left(7 t^{5}\right)$
(b) $y=\ln \left(a t^{\circ}\right)$
(c) $y=\ln (t+19)$
(d) $y=5 \ln (t+1)^{2}$
(e) $y=\ln x-\ln (1+x)$
(f) $y=\ln \left[x(1-x)^{8}\right]$
(g) $y=\ln \left(\frac{2 x}{1+x}\right)$
(h) $y=5 x^{4} \ln x^{2}$
3. Find the derivatives of the following by first taking the natural log of both sides:
(a) $y=\frac{3 x}{(x+2)(x+4)}$
(b) $y=\left(x^{2}+3\right) e^{x^{2}+1}$

Exercise 7.4

1. Find $\partial y / \partial x_{1}$ and $\partial y / \partial x_{2}$ for each of the following functions:
(a) $y=2 x_{1}^{3}-11 x_{1}^{2} x_{2}+3 x_{2}^{2}$
(d) $y=\frac{5 x_{1}+3}{x_{2}-2}$
2. Find f_{x} and f_{y} from the following:
(a) $f(x, y)=x^{2}+5 x y-y^{3}$
(b) $f(x, y)=\frac{2 x-3 y}{x+y}$
3. From the answers to Prob. 2 , find $f_{x}(1,2)$, the value of the partial derivative f_{x} when $x=1$ and $y=2$, for each function.
4. If the utility function of an individual takes the form

$$
U=U\left(x_{1}, x_{2}\right)=\left(x_{1}+2\right)^{2}\left(x_{2}+3\right)^{3}
$$

where U is total utility, and x_{1} and x_{2} are the quantities of two commodities consumed:
(a) Find the marginal-utility function of each of the two commodities.
(b) Find the value of the marginal utility of the first commodity when 3 units of each commodity are consumed.
7. Write the gradients of the following functions:
(a) $f(x, y, z)=x^{2}+y^{3}+z^{4}$
(b) $f(x, y, z)=x y z$

Exercise 8.1

1. Find the differential $d y$, given:
(a) $y=-x\left(x^{2}+3\right)$
2. Find the point elasticity of demand, given $Q=k / P^{n}$, where k and n are positive constants.
(a) Does the elasticity depend on the price in this case?
(b) In the special case where $n=1$, what is the shape of the demand curve? What is the point elasticity of demand?
3. Given $Q=100-2 P+0.02 Y$, where Q is quantity demanded, P is price, and Y is income, and given $P=20$ and $Y=5,000$, find the
(a) Price elasticity of demand.
(b) Income elasticity of demand.

Exercise 8.2

3. Find the total differential, given
(a) $y=\frac{x_{1}}{x_{1}+x_{2}}$
4. The supply function of a certain commodity is

$$
Q=a+b P^{2}+R^{1 / 2} \quad(a<0, b>0) \quad[\mathrm{R} \text { : rainfall }]
$$

Find the price elasticity of supply $\varepsilon_{Q P}$, and the rainfall elasticity of supply $\varepsilon_{Q R}$.
5. How do the two partial elasticities in Prob. 4 vary with P and R ? In a strictly monotonic fashion (assuming positive P and R)?
6. The foreign demand for our exports X depends on the foreign income Y_{f} and our price level $P: X=Y_{f}^{1 / 2}+P^{-2}$. Find the partial elasticity of foreign demand for our exports with respect to our price level.
7. Find the total differential for each of the following functions:
(b) $U=7 x^{2} y^{3}$
(f) $U=(x-3 y)^{3}$

Exercise 8.4

2. Find the total derivative $d z / d t$, given
(a) $z=x^{2}-8 x y-y^{3}$, where $x=3 t$ and $y=1-t$
(b) $z=7 u+v t$, where $u=2 t^{2}$ and $v=t+1$
(c) $z=f(x, y, t)$, where $x=a+b t$ and $y=c+k t$
3. Find the partial total derivatives $\S W / \xi u$ and $\S W / \xi v$ if
(a) $W=a x^{2}+b x y+c u$, where $x=\alpha u+\beta v$ and $y=\gamma u$
(b) $W=f\left(x_{1}, x_{2}\right)$, where $x_{1}=5 u^{2}+3 v$ and $x_{2}=u-4 v^{3}$
