ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 6: Calculus

Example

Total cost: $C=C(Q)$
Marginal cost: $M C=C^{\prime}(Q)$
Average cost:

$$
A C=\frac{C(Q)}{Q}
$$

When is $\frac{d A C}{d Q}$ positive?

Example

Revenue: $R=f(Q)$
Output: $Q=g(L)$
How does revenue change due to a change in labor input L ?

$$
\frac{d R}{d L}=\frac{d R}{d Q} \cdot \frac{d Q}{d L}
$$

Exponential Functions

The exponential or power function can be represented as:

$$
y=f(t)=b^{t} \quad(b>1)
$$

where b denotes a fixed base of the exponent.

A more generalized version can be written as:

$$
y=a b^{c t}
$$

Natural Exponential Function

Natural exponential function: Base is a special mathematical constant called Euler's number $e=2.71828$...

$$
y=a e^{r t}
$$

Natural Exponential Function

Natural exponential function: Base is a special mathematical constant called Euler's number $e=2.71828$...

$$
y=a e^{r t}
$$

Where did this number e come from?
It can be shown:

$$
e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Natural Exponential Function

Jacob Bernoulli discovered this constant in 1683 while studying a question about compound interest.

Logarithmic Function

Since the exponential function is a monotonic function, its inverse exists.

The inverse of the exponential function is called the log or logarithmic function.

For the exponential function:

$$
y=b^{t} \rightarrow \log _{b}(y)=t
$$

For the natural exponential function:

$$
y=e^{t} \rightarrow \log _{e} y=\ln (y)
$$

$y=\exp (x)$

$y=\ln (x)$

Rules for Logarithmic Functions

- $\ln (u v)=\ln u+\ln v$
- $\ln (u / v)=\ln u-\ln v$
- $\ln u^{a}=a \ln u$

Derivatives of Exponential Functions

Derivative of the exponential function:

$$
y=e^{t} \quad \rightarrow \quad \frac{d y}{d t}=e^{t}
$$

Using the chain rule:

$$
y=e^{f(t)} \quad \rightarrow \quad \frac{d y}{d t}=f^{\prime}(t) e^{f(t)}
$$

Derivatives of Logarithmic Functions

Derivative of the log function:

$$
\frac{d}{d t} \ln t=\frac{1}{t}
$$

Using the chain rule:

$$
\frac{d}{d t} \ln f(t)=\frac{f^{\prime}(t)}{f(t)}
$$

Examples

Find the derivatives for the following functions:

1. $y=e^{t}$
2. $y=\ln t$
3. $y=a e^{r t}$
4. $y=e^{-t}$
5. $y=\ln a t$
6. $y=\ln t^{c}$

Partial Differentiation

For a function of several variables:

$$
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

If x_{1} changes by Δx_{1} but all other variables remain constant:

$$
\frac{\Delta y}{\Delta x_{1}}=\frac{f\left(x_{1}+\Delta x_{1}, x_{2}, \cdots, x_{n}\right)-f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\Delta x_{1}}
$$

Partial derivative of y with respect to x_{i} :

$$
\frac{\partial y}{\partial x_{i}}=f_{i}=\lim _{\Delta x_{i} \rightarrow 0} \frac{\Delta y}{\Delta x_{i}}
$$

Partial Derivatives

Gradient Vector

Gradient: vector of all partial derivatives of a function

$$
\nabla f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left[f_{1}, f_{2}, \cdots, f_{n}\right]^{\prime}
$$

Example

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2} \\
& \frac{\partial y}{\partial x_{1}}=f_{1}= \\
& \frac{\partial y}{\partial x_{2}}=f_{2}=
\end{aligned}
$$

Example

$$
\begin{aligned}
y & =f(u, v)=(u+4)(3 u+2 v) \\
\frac{\partial y}{\partial u} & =f_{u}= \\
\frac{\partial y}{\partial v} & =f_{v}=
\end{aligned}
$$

Production Function

$$
Q=A K^{\alpha} L^{1-\alpha}
$$

Marginal product of capital (MPK):

$$
\frac{\partial Q}{\partial K}=Q_{K}=
$$

Marginal product of labor (MPL):

$$
\frac{\partial Q}{\partial L}=Q_{L}=
$$

Differentials

Note that,

$$
\Delta y \equiv\left[\frac{\Delta y}{\Delta x}\right] \Delta x
$$

Then for infinitesimal changes,

$$
d y \equiv\left[\frac{d y}{d x}\right] d x \quad \text { or } \quad d y=f^{\prime}(x) d x
$$

We will call $d y$ and $d x$ differentials of y and x, respectively.

Derivative as a ratio

Given that,

$$
d y \equiv\left[\frac{d y}{d x}\right] d x \quad \text { or } \quad d y=f^{\prime}(x) d x
$$

We can think of $f^{\prime}(x)$ as a ratio of two quantities $d y$ and $d x$.

Elasticity

An important quantity that economists love to calculate is the elasticity of a function.

Elasticity is defined as:

$$
\varepsilon=\frac{\text { Percentage change in } \mathrm{y}}{\text { Percentage change in } \mathrm{x}}=\frac{d y / y}{d x / x}
$$

We can calculate this as:

$$
\varepsilon=\frac{d y}{d x} \cdot \frac{x}{y}
$$

Elasticity

Elasticity:

$$
\varepsilon=\frac{d y}{d x} \cdot \frac{x}{y}
$$

- $|\varepsilon|>1$, elastic
- $|\varepsilon|=1$, unit elasticity
- $|\varepsilon|<1$, inelastic

Example

$$
C=a+b Y
$$

Total Differential

For a function of n variables

$$
y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

Total differential:

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}=\sum_{i=1}^{n} f_{i} d x_{i}
$$

I am using ∂ to differentiate partial derivatives from total derivatives. In particular,

$$
\frac{\partial f}{\partial x_{i}}=\left.\frac{d f}{d x_{i}}\right|_{o t h e r ~ v a r i a b l e s ~ a r e ~ c o n s t a n t ~}
$$

Total Differential

Consider a savings function:

$$
S=S(Y, i)
$$

where S is savings, Y is national income, and i is the interest rate.

Total differential:

$$
d S=\frac{\partial S}{\partial Y} d Y+\frac{\partial S}{\partial i} d i
$$

Example

$$
y=5 x_{1}^{2}+3 x_{2}
$$

Total Derivative

Total differential:

$$
d f=f_{1} d x_{1}+f_{2} d x_{2}+\cdots+f_{n} d x_{n}
$$

We can divide the total differential by $d x_{1}$ to get the total derivative of f with respect to x_{1} :

$$
\frac{d f}{d x_{1}}=f_{1}+f_{2} \cdot \frac{d x_{2}}{d x_{1}}+\cdots+f_{n} \cdot \frac{d x_{n}}{d x_{1}}
$$

Total Derivative

Given the function

$$
y=f\left(x_{1}, x_{2}\right)
$$

We are interested in how y changes with respect to x_{1}, but x_{2} also depends of x_{1}

$$
x_{2}=g\left(x_{1}\right)
$$

We know that,

$$
d y=f_{1} d x_{1}+f_{2} d x_{2}
$$

Dividing both sides by $d x_{1}$,

$$
\frac{d y}{d x_{1}}=f_{1}+f_{2} \cdot g^{\prime}\left(x_{1}\right)=\frac{\partial y}{\partial x_{1}}+\frac{\partial y}{\partial x_{2}} \cdot \frac{d x_{2}}{d x_{1}}
$$

A variation on the theme

For a function

$$
y=f\left(x_{1}, x_{2}, w\right), \quad x_{1}=g(w), x_{2}=h(w)
$$

The total derivative of y is given by

$$
\frac{d y}{d w}=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d w}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d w}+\frac{\partial f}{\partial w}
$$

Example

Let a production function be

$$
Q(t)=A(t) K(t)^{\alpha} L(t)^{1-\alpha}
$$

where

$$
K(t)=K_{0}+a t \quad L(t)=L_{0}+b t
$$

Another variation on the theme

If a function is given,

$$
y=f\left(x_{1}, x_{2}, u, v\right)
$$

with $x_{1}=g(u, v)$ and $x_{2}=h(u, v)$.
Then,

$$
\frac{d y}{d u}=\frac{\partial y}{\partial x_{1}} \frac{\partial x_{1}}{\partial u}+\frac{\partial y}{\partial x_{2}} \frac{\partial x_{2}}{\partial u}+\frac{\partial y}{\partial u}
$$

References and Homework

References: Chapter 10 (notes are sufficient), Section 10.5, Section 7.4, Sections 8.1, 8.2, 8.4

Homework problems:

- Ex 10.5: 1, 3, 7
- Ex 7.41 (a) (d), 2 (a) (b), 3, 5, 7;
- Ex 8.1: 1 (a), 4, 6;
- Ex 8.2: 3 (a), 4, 5, 6, 7 (b) (f);
- Ex 8.4: 2, 4;

