Exercise 6.2

2. Given the function $y=5 x^{2}-4 x$:
(a) Find the difference quotient as a function of x and Δx.
(b) Find the derivative $d y / d x$. (Using the limit definition.)
(c) Find $f^{\prime}(2)$ and $f^{\prime}(3)$.
3. Given the function $y=5 x-2$:
(a) Find the difference quotient $\Delta y / \Delta x$. What type of function is it?
(b) Since the expression Δx does not appear in the function $\Delta y / \Delta x$ in part (a), does it make any difference to the value of $\Delta y / \Delta x$ whether Δx is large or small? Consequently, what is the limit of the difference quotient as Δx approaches zero?

Exercise 7.1

3. Find $f^{\prime}(1)$ and $f^{\prime}(2)$ for the following functions:
(a) $y=f(x)=18 x$
(b) $y=f(x)=c x^{3}$
(c) $f(x)=-5 x^{-2}$
(d) $f(x)=\frac{3}{4} x^{4 / 3}$
(e) $f(w)=6 w^{1 / 3}$
(f) $f(w)=-3 w^{-1 / 6}$

Exercise 7.2

3. Differentiate the following by using the product rule:
(d) $(a x-b)\left(c x^{2}\right)$
(e) $(2-3 x)(1+x)(x+2)$
4. Find the derivatives of:
(a) $\left(x^{2}+3\right) / x$
(b) $(x+9) / x$
(c) $6 x /(x+5)$
(d) $\left(a x^{2}+b\right) /(c x+d)$
5. Given the function $f(x)=a x+b$, find the derivatives of:
(a) $f(x)$
(b) $x f(x)$
(c) $1 / f(x)$
(d) $f(x) / x$

Exercise 7.3

1. Given $y=u^{3}+2 u$, where $u=5-x^{2}$, find $d y / d x$ by the chain rule.
2. Given $w=a y^{2}$ and $y=b x^{2}+c x$, find $d w / d x$ by the chain rule.
3. Use the chain rule to find $d y / d x$ for the following:
(a) $y=\left(3 x^{2}-13\right)^{3}$
(b) $y=\left(7 x^{3}-5\right)^{9}$
(c) $y=(a x+b)^{5}$
4. Given $y=(16 x+3)^{-2}$, use the chain rule to find $d y / d x$. Then rewrite the function as $y=1 /(16 x+3)^{2}$ and find $d y / d x$ by the quotient rule. Are the answers identical?
5. Given $y=7 x+21$, find its inverse function. Then find $d y / d x$ and $d x / d y$, and verify the inverse-function rule. Also verify that the graphs of the two functions bear a mirrorimage relationship to each other.
6. Are the following functions strictly monotonic?
(a) $y=-x^{6}+5 \quad(x>0)$
(b) $y=4 x^{5}+x^{3}+3 x$

For each strictly monotonic function, find $d x / d y$ by the inverse-function rule.

