ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 5: Calculus

(Hypothetical) Production Function for Grades

$$
y=f(x)=x^{2}+20
$$

How much can your grade can increase if you study for one additional hour per week?

(Hypothetical) Production Function for Grades

$$
y=f(x)=x^{2}+20
$$

How much can your grade can increase if you study for one additional hour per week? Depends on how much you are studying right now!

Average Rate of Change
Use Δ to denote change:

$$
\Delta x=x_{1}-x_{0}
$$

Change in y per unit change in x :

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

Average Rate of Change

$$
y=f(x)=x^{2}+20
$$

What happens if you go from 6 to 8 hours of studying?

$$
x_{0}=6, x_{1}=8 \rightarrow \Delta x=x_{1}-x_{0}=2
$$

Total change in grades:

$$
f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)=
$$

Per hour change in grade:

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=
$$

The Derivative

Usually interested in minuscule changes from x_{0}.
The derivative of a function is defined as:

$$
\frac{d y}{d x}=f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

Note that

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

The Derivative

For the function: $y=f(x)=x^{2}+20$

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \\
& =\frac{\left(x_{0}+\Delta x\right)^{2}+20-\left(x_{0}^{2}+20\right)}{\Delta x} \\
& =\frac{x_{0}^{2}+(\Delta x)^{2}+2 x_{0} \Delta x-x_{0}^{2}}{\Delta x} \\
& =2 x_{0}+\Delta x
\end{aligned}
$$

Then the derivative is given by:

$$
\frac{d y}{d x}=f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} 2 x_{0}+\Delta x=2 x_{0}
$$

The Derivative

The derivative:

$$
\frac{d y}{d x}=f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

Alternatively,

$$
\frac{d y}{d x}=f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

The Derivative

For the function: $y=f(x)=x^{2}+20$

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{x^{2}+20-x_{0}^{2}-20}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} x+x_{0}=2 x_{0}
\end{aligned}
$$

Derivative $=$ Slope of the Tangent Line

Concept of a limit

We say that L is the limit of $f(x)$ at a, i.e.

$$
\lim _{x \rightarrow a} f(x)=L
$$

if $f(x)$ approaches L as x approaches a from any direction.
Note that we don't actually set $x=a$.
Also for the limit to exist at a point we need the function to approach the same value from both directions.

Concept of a limit

Left-side limit: If x approaches a from the left side:

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

Right-side limit: If x approaches a from the right side:

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

Only when both left-side and right-side limits have a common finite value, we say that the limit exists.

Example: Limit doesn't exist

Limit: Another example

$$
f(x)=\frac{4 x-4}{|x-1|}
$$

$\lim _{x \rightarrow 1^{-}} f(x)=$
$\lim _{x \rightarrow 1^{+}} f(x)=$

Limit: Another example

Continuity of a Function

A function $y=f(x)$ is said to be continuous at a if $\lim _{x \rightarrow a} f(x)$ exists and

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Discontinuity: Example

$$
y=\left\{\begin{array}{l}
2 x+1 \text { if } x<1 \\
2 \text { if } x=1 \\
2 x+1 \text { if } x>1
\end{array}\right.
$$

In this example, the limit exists but the function is not continuous.

Differentiability and Continuity

$f^{\prime}\left(x_{0}\right)$ exists if the following limit exists:

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

A function $y=f(x)$ is continuous at x_{0} if

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Any connection?

Differentiability and Continuity

Continuity is a necessary condition for differentiability, but it is not sufficient.
f is not continuous $\Longrightarrow f$ is not differentiable
f is continuous $\Longrightarrow f$ could be differentiable or not

Continuous but not differentiable

$$
\begin{gathered}
y=|x| \\
y=\left\{\begin{array}{l}
x \text { if } x \geqslant 0 \\
-x \text { if } x<0
\end{array}\right.
\end{gathered}
$$

This function is continuous but not differentiable.

So how to differentiate functions?

Rules of differentiation, easier than taking the limit each time
Constant function rule:
For function $f(x)=k, f^{\prime}(x)=0$.
Power function rule:
For function $f(x)=x^{n}, f^{\prime}(x)=n x^{n-1}$.
Generalized power function rule: For function $f(x)=c x^{n}, f^{\prime}(x)=c n x^{n-1}$.

Rules of Differentiation

Two or more functions of one variable
Sum-Difference Rule

$$
\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)
$$

Product Rule

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

Rules of Differentiation

Two or more functions of one variable
Quotient Rule

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Inverse Function Rule

$$
\frac{d x}{d y}=\frac{1}{d y / d x}
$$

Rules of Differentiation

Functions of Different Variables

Chain Rule

$$
\begin{aligned}
& \text { For } z=f(y), \quad y=g(x) \\
& \qquad \frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}=f^{\prime}(y) g^{\prime}(x)
\end{aligned}
$$

References and Homework

Textbook Reference: Sections 6.2-6.4, 6.7, 7.1-7.3
Homework Questions:

- Exercise 6.2: 2,3
- Exercise 7.1: 3
- Exercise 7.2: 3 (d) (e), 7, 8
- Exercise 7.3: 1-6

