Rules of Differentiation

Function of a Single Variable

- Constant function rule: If $f(x)=k, f^{\prime}(x)=0$.
- Power function rule: If $f(x)=x^{n}, f^{\prime}(x)=n x^{n-1}$.
- Generalized power function rule: If $f(x)=c x^{n}, f^{\prime}(x)=c n x^{n-1}$.

Example. For $y=f(x)=3 x^{2}, f^{\prime}(x)=6 x$.

- Inverse function rule: Given $y=f(x)$ and inverse function $x=f^{-1}(y)$

$$
\frac{d x}{d y}=\frac{1}{d y / d x}
$$

Exercises

1. Find the derivative of $y=-3 x^{6}$?
2. Verify the inverse function rule for $y=6 x+1$.
3. Find the derivative of $y=1 / x$.

In the class, we learned the limit definition of the derivative. In particular,

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

All the rules of differentiation can actually be derived from the limit definition of the derivative. But it is easier to have a set of rules to quickly differentiate a function rather than writing down the limit each time.

For example, if we have the function $y=a x$, using the limit definition of the derivative:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{a(x+\Delta x)-a x}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} a=a
\end{aligned}
$$

Similarly, for $y=a x^{2}$

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{a(x+\Delta x)^{2}-a x^{2}}{\Delta x} \\
& =\frac{a x^{2}+a \Delta x^{2}+2 a x \Delta x-a x^{2}}{\Delta x} \\
& =a \Delta x+2 a x \\
\frac{d y}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=2 a x
\end{aligned}
$$

Exercise. Verify the constant function rule using the limit definition.

Two or More Functions of a Single Variable

- Sum-Difference Rule

$$
\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)
$$

Example. For $y=2 x+x^{2}-x^{3}$, the derivative is given by $\frac{d y}{d x}=2+2 x-3 x^{2}$

- Product Rule

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

Example. For $y=3 x\left(x^{2}+1\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =3 x(2 x)+3\left(x^{2}+1\right) \\
& =6 x^{2}+3 x^{2}+3=9 x^{2}+3
\end{aligned}
$$

Alternatively, one can write $y=3 x^{3}+3 x$ and evaluate the derivative directly.

- Quotient Rule

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Example. Given the function

$$
y=\frac{2 x-3}{x+1}
$$

We can calculate the derivative using the quotient rule as follows:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2(x+1)-(2 x-3) 1}{(x+1)^{2}} \\
& =\frac{2 x+2-2 x+3}{(x+1)^{2}}=\frac{5}{(x+1)^{2}}
\end{aligned}
$$

Exercise. Calculate the derivative for the following functions using product or quotient rule:

$$
y=x(x+1), \quad y=\frac{1}{x}, \quad y=\frac{2 x^{3}-x}{x^{2}}
$$

Functions of Different Variables

Chain Rule

If we have two functions:

$$
z=f(y), \quad y=g(x)
$$

Then,

$$
\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}=f^{\prime}(y) g^{\prime}(x)
$$

Example. $R=p Q$ is revenue from the sale of quantity Q at price p. Quantity produced $Q=a L$ depends on labor input L. Then,

$$
\frac{d R}{d L}=\frac{d R}{d Q} \cdot \frac{d Q}{d L}=p \cdot a
$$

Exercise. Find the derivative of f with respect to x where:

$$
f(y)=y^{2}-1 \quad y=2 x^{2}
$$

Exercise. Find the derivative of $y=\frac{1}{(2 x+1)^{3}}$ using Chain Rule by defining the outer function $y=f(u)=\frac{1}{u^{3}}$ and inner function $u=g(x)=2 x+1$.

If you are bored:
Exercise. Verify the product rule using the limit definition of the derivative.
Easier if you start with the following definition:

$$
h^{\prime}(x)=\lim _{x_{0} \rightarrow x} \frac{h(x)-h\left(x_{0}\right)}{x-x_{0}}
$$

(Hint: Start by adding and subtracting $f(x) g\left(x_{0}\right)$ in the numerator.)

