Homework 4 Problems

ECON 441: Introduction to Mathematical Economics

Instructor: Div Bhagia

Exercise 5.3

- 1. Use the determinant $\begin{vmatrix} 4 & 0 & -1 \\ 2 & 1 & -7 \\ 3 & 3 & 9 \end{vmatrix}$ to verify the first four properties of determinants.
- 4. Show that when all the elements of an *n*th-order determinant |A| are multiplied by a number *k*, the result will be $k^n |A|$.
- 5. Calculate the determinant for the following matrices. Comment on whether the matrices are nonsingular and the rank of each matrix.

(a)	4 19 7	0 1 ·	1 -3	(b)	4 -5 7	-2 6	1 0 3
(c)	[7 [1 [13	-1 1 -3	0 4 -4	(d)	-4 3 10	9 0 8	5] 1] 6]

- 8. Comment on the validity of the following statements:
 - (a) Given any matrix A, we can always derive from it a transpose and a determinant.
 - (b) Multiplying each element of an $n \times n$ determinant by 2 will double the value of that determinant.
 - (c) If a square matrix A vanishes, then we can be sure that the equation system Ax = d is nonsingular.

Exercise 5.4

2. Find the inverse of each of the following matrices:

(a)
$$A = \begin{bmatrix} 5 & 2 \\ 0 & 1 \end{bmatrix}$$

(b) $B = \begin{bmatrix} -1 & 0 \\ 9 & 2 \end{bmatrix}$
(c) $C = \begin{bmatrix} 3 & 7 \\ 3 & -1 \end{bmatrix}$
(d) $D = \begin{bmatrix} 7 & 6 \\ 0 & 3 \end{bmatrix}$

- 3. (a) Drawing on your answers to Prob. 2, formulate a two-step rule for finding the adjoint of a given 2×2 matrix *A*: In the first step, indicate what should be done to the two diagonal elements of *A* in order to get the diagonal elements of *adjA*; in the second step, indicate what should be done to the two off-diagonal elements of *A*. (Warning: This rule applies only to 2×2 matrices.)
 - (b) Add a third step which, in conjunction with the previous two steps, yields the 2×2 inverse matrix A^{-1} .
- 4. Find the inverse of each of the following matrices:

(a) <i>E</i> =	$\begin{bmatrix} 4 & -2 & 1 \\ 7 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$	(b) <i>F</i> =	$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 3 \\ 4 & 0 & 2 \end{bmatrix}$
(c) <i>G</i> =	$\left[\begin{array}{rrrr}1 & 0 & 0\\0 & 0 & 1\\0 & 1 & 0\end{array}\right]$	(d) <i>H</i> =	$\left[\begin{array}{rrrr}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right]$

- 6. Solve the system Ax = d by matrix inversion, where
 - (a) 4x + 3y = 28 2x + 5y = 42(b) $4x_1 + x_2 - 5x_3 = 8$ $-2x_1 + 3x_2 + x_3 = 12$ $3x_1 - x_2 + 4x_3 = 5$
- 7. Is it possible for a matrix to be its own inverse?

Exercise 5.5

1. Use Cramer's rule to solve the following equation systems:

(b) $-x_1 + 3x_2 = -3$	(a) $3x_1 - 2x_2 = 6$
$4x_1 - x_2 = 12$	$2x_1 + x_2 = 11$
(d) $5x_1 + 9x_2 = 14$	(c) $8x_1 - 7x_2 = 9$
$7x_1 - 3x_2 = 4$	$x_1 + x_2 = 3$

- 2. For each of the equation systems in Prob. 1, find the inverse of the coefficient matrix, and get the solution by the formula $x^* = A^{-1}d$.
- 3. Use Cramer's rule to solve the following equation systems:

(d) $-x + y + z = a$	(a) $8x_1 - x_2 = 16$
x - y + z = b	$2x_2 + 5x_3 = 5$
x + y - z = c	$2x_1 + 3x_3 = 7$