Homework 4 Problems

Exercise 5.3

1. Use the determinant $\left|\begin{array}{rrr}4 & 0 & -1 \\ 2 & 1 & -7 \\ 3 & 3 & 9\end{array}\right|$ to verify the first four properties of determinants.
2. Show that when all the elements of an n th-order determinant $|A|$ are multiplied by a number k, the result will be $k^{n}|A|$.
3. Calculate the determinant for the following matrices. Comment on whether the matrices are nonsingular and the rank of each matrix.
(a) $\left[\begin{array}{rrr}4 & 0 & 1 \\ 19 & 1 & -3 \\ 7 & 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{rrr}4 & -2 & 1 \\ -5 & 6 & 0 \\ 7 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{rrr}7 & -1 & 0 \\ 1 & 1 & 4 \\ 13 & -3 & -4\end{array}\right]$
(d) $\left[\begin{array}{rrr}-4 & 9 & 5 \\ 3 & 0 & 1 \\ 10 & 8 & 6\end{array}\right]$
4. Comment on the validity of the following statements:
(a) Given any matrix A, we can always derive from it a transpose and a determinant.
(b) Multiplying each element of an $n \times n$ determinant by 2 will double the value of that determinant.
(c) If a square matrix A vanishes, then we can be sure that the equation system $A x=d$ is nonsingular.

Exercise 5.4

2. Find the inverse of each of the following matrices:
(a) $A=\left[\begin{array}{ll}5 & 2 \\ 0 & 1\end{array}\right]$
(b) $B=\left[\begin{array}{rr}-1 & 0 \\ 9 & 2\end{array}\right]$
(c) $C=\left[\begin{array}{rr}3 & 7 \\ 3 & -1\end{array}\right]$
(d) $D=\left[\begin{array}{ll}7 & 6 \\ 0 & 3\end{array}\right]$
3. (a) Drawing on your answers to Prob. 2, formulate a two-step rule for finding the adjoint of a given 2×2 matrix A : In the first step, indicate what should be done to the two diagonal elements of A in order to get the diagonal elements of $\operatorname{adj} A$; in the second step, indicate what should be done to the two offdiagonal elements of A. (Warning: This rule applies only to 2×2 matrices.)
(b) Add a third step which, in conjunction with the previous two steps, yields the 2×2 inverse matrix A^{-1}.
4. Find the inverse of each of the following matrices:
(a) $E=\left[\begin{array}{rrr}4 & -2 & 1 \\ 7 & 3 & 0 \\ 2 & 0 & 1\end{array}\right]$
(b) $F=\left[\begin{array}{rrr}1 & -1 & 2 \\ 1 & 0 & 3 \\ 4 & 0 & 2\end{array}\right]$
(c) $G=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
(d) $H=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
5. Solve the system $A x=d$ by matrix inversion, where
(a) $4 x+3 y=28$

$$
2 x+5 y=42
$$

(b) $4 x_{1}+x_{2}-5 x_{3}=8$
$-2 x_{1}+3 x_{2}+x_{3}=12$

$$
3 x_{1}-x_{2}+4 x_{3}=5
$$

7. Is it possible for a matrix to be its own inverse?

Exercise 5.5

1. Use Cramer's rule to solve the following equation systems:
(a) $3 x_{1}-2 x_{2}=6$
(b) $-x_{1}+3 x_{2}=-3$
$2 x_{1}+x_{2}=11$
$4 x_{1}-x_{2}=12$
(c) $8 x_{1}-7 x_{2}=9$
$x_{1}+x_{2}=3$
(d) $5 x_{1}+9 x_{2}=14$
$7 x_{1}-3 x_{2}=4$
2. For each of the equation systems in Prob. 1, find the inverse of the coefficient matrix, and get the solution by the formula $x^{*}=A^{-1} d$.
3. Use Cramer's rule to solve the following equation systems:
(a) $8 x_{1}-x_{2}=16$
$2 x_{2}+5 x_{3}=5$
$2 x_{1}+3 x_{3}=7$
(d) $-x+y+z=a$
$x-y+z=b$
$x+y-z=c$
