ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 4: Linear Algebra

Determinant of a $n \times n$ Matrix

A minor of the element $a_{i j}$, denoted by $\left|M_{i j}\right|$ is obtained by deleting the i th row and j th column.

Cofactor $C_{i j}$ is defined as:

$$
\left|C_{i j}\right|=(-1)^{i+j}\left|M_{i j}\right|
$$

Then,

$$
|A|=\sum_{i=1}^{n} a_{i j}\left|C_{i j}\right|=\sum_{j=1}^{n} a_{i j}\left|C_{i j}\right|
$$

Find the Determinant

$$
A=\left[\begin{array}{ccc}
1 & 5 & 1 \\
0 & 3 & 9 \\
-1 & 0 & 0
\end{array}\right]
$$

Properties of Determinants

1. $|A|=\left|A^{\prime}\right|$
2. Interchanging rows or columns will alter the sign but not the value
3. Multiplication of any one row (or one column) by a scalar k will change the value of the determinant k-fold
4. The addition (subtraction) of a multiple of any row (or column) to (from) another row (or column) will leave the determinant unaltered
5. If one row (or column) is a multiple of another row (or column), the value of the determinant will be zero.

Criteria for Nonsingularity

The following statements are equivalent:

- $|A| \neq 0$
- Rows (or equivalently columns) of A are independent
- A has full rank
- A is nonsingular
- A^{-1} exists
- A unique solution to $A x=b\left(x^{*}=A^{-1} b\right)$ exists

Matrix Inversion

Adjoint of a nonsingular $n \times n$ matrix

$$
\begin{gathered}
\operatorname{adj} A=C^{\prime}=\left[\begin{array}{llll}
\left|C_{11}\right| & \left|C_{21}\right| & \ldots & \left|C_{n 1}\right| \\
\left|C_{12}\right| & \left|C_{22}\right| & \ldots & \left|C_{n 2}\right| \\
\vdots & \vdots & \ldots & \vdots \\
\left|C_{1 n}\right| & \left|C_{2 n}\right| & \ldots & \left|C_{n n}\right|
\end{array}\right] \\
A^{-1}=\frac{1}{|A|} A d j A
\end{gathered}
$$

Find the Inverse

$$
A=\left[\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right]
$$

Find the Inverse

$$
A=\left[\begin{array}{ccc}
1 & 5 & 1 \\
0 & 3 & 9 \\
-1 & 0 & 0
\end{array}\right]
$$

A Simple Economic Model

Two equations in two unknowns:

$$
\begin{aligned}
& q+2 p=100 \\
& q-3 p=20
\end{aligned}
$$

Can write this as:

$$
A x=b
$$

where

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

Solution using Matrix Inversion

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

Cramer's Rule

More efficient way of solving a system of equations
The k th element of x can be solved by:

$$
x_{k}^{*}=\frac{\left|A_{k}\right|}{|A|}
$$

where A_{k} is a matrix formed by exchanging k th column of A by b.

Solution using Cramer's Rule

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

Homogeneous equation system

A homogeneous equation system is given by

$$
A x=0
$$

If A is nonsingular, $x^{*}=A^{-1} 0=0$.
If A is singular there can be infinite number of solutions (this is true for any system of equations).

Coming up:

Applications of Matrix Algebra

Network Theory

A network of connections can be expressed as an adjacency matrix.

$$
M=\left(\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 n} \\
m_{21} & m_{22} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n 1} & m_{n 2} & \cdots & m_{n n}
\end{array}\right)
$$

where

$$
m_{i j}= \begin{cases}1 & \text { if there is a direct link from } i \text { to } j \\ 0 & \text { otherwise }\end{cases}
$$

Network Theory

Consider the following network:

$$
M=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad M^{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad M^{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The matrices M, M^{2}, M^{3} give the nodes reachable in one, two and three steps from any initial node.

Network Theory

Consider the sum:

$$
S_{k}=M+M^{2}+M^{3}+\ldots+M^{k}
$$

The (i, j) element of S_{k} gives the number of paths of length k or less, from i to j.

For the previous example:

$$
S_{3}=M+M^{2}+M^{3}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

So there is one way to go from any node to any other in three or fewer steps.

Uses of Network Theory

Network theory can be used to model

- Interconnectedness of financial institutions (to predict risk of banking collapses)
- Interconnectedness of the countries in world trade
- Predicting supply chain risk

Markov Chain

- A Markov Chain can model the transition between different states.
- Example: Employment (E) and Unemployment (U).
- Transition matrix:

$$
P=\left(\begin{array}{ll}
P(E \rightarrow E) & P(U \rightarrow E) \\
P(E \rightarrow U) & P(U \rightarrow U)
\end{array}\right)=\left(\begin{array}{ll}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right)
$$

- Say the initial state vector is:

$$
\pi(0)=\left[\begin{array}{l}
\pi_{E}(0) \\
\pi_{U}(0)
\end{array}\right]=\left[\begin{array}{l}
0.8 \\
0.2
\end{array}\right]
$$

Transition Matrix

After one period, the state distribution is:

$$
\pi(1)=\left[\begin{array}{l}
\pi_{E}(1) \\
\pi_{U}(1)
\end{array}\right]=P \pi(0)=\left[\begin{array}{ll}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right]\left[\begin{array}{l}
0.8 \\
0.2
\end{array}\right]=\left[\begin{array}{l}
0.76 \\
0.24
\end{array}\right]
$$

After t periods:

$$
\pi(t)=P^{t} \pi(0)
$$

Ordinary Least Squares

Linear model with k variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\ldots+\beta_{k} X_{i k}+\varepsilon_{i}
$$

where $i=1, \ldots, n$ denotes n observations.
Denote
$Y=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right]_{n \times 1}, \beta=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k}\end{array}\right]_{k \times 1}, \boldsymbol{X}=\left[\begin{array}{cccc}1 & X_{11} & \ldots & X_{1 k} \\ 1 & X_{12} & \ldots & X_{2 k} \\ \vdots & \vdots & & \\ 1 & X_{1 n} & \ldots & X_{n k}\end{array}\right]_{n \times k}, \varepsilon=\left[\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \vdots \\ \varepsilon_{n}\end{array}\right]_{n \times}$
Then,

$$
Y=X \beta+\varepsilon \quad \text { OLS estimator: } \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

Natural Language Processing (NLP)

- Bag of Words (BoW) model is a simple and widely used method in NLP
- Transform text into fixed-length vectors by counting how many times each word appears in a document
- Example:
- Doc1: "the cat sat on the mat"
- Doc2: "the dog sat on the log"
- Vocabulary for these documents: [the, cat, sat, on, mat, dog, log]
- Vector for Doc1: [2, 1, 1, 1, 1, 0, 0]
- Vector for Doc2: [2, 0, 1, 1, 0, 1, 1]
- Calculate similarity between document vectors to classify documents into predefined classes

What's next?

- Quiz 2 next week will cover all of Linear Algebra
- Notes for reviewing Linear Algebra uploaded (not a substitute for the textbook for understanding concepts)
- We will move on to differential calculus next week

Homework Problems

Textbook reference: Sections 5.3-5.5

- Exercise 5.3: 1, 4, 5, 8
- Exercise 5.4: 2, 3, 4, 6, 7
- Exercise 5.5: 1, 2, 3 (a) (d)

