Determinant $|A|$ is a unique scalar associated with a square matrix A.

Determinant of a 2×2 matrix:

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Can be calculated as:

$$
|A|=a_{11} a_{22}-a_{12} a_{21}
$$

Find the determinant of A and B given below:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

Is A nonsingular? What about B ? Check if you get the same answer by reducing A and B to their echelon form and then finding the rank.

Determinant of a 3×3 matrix:

$$
\begin{aligned}
|A| & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Find the determinant for:

$$
A=\left[\begin{array}{ccc}
1 & 5 & 1 \\
0 & 3 & 9 \\
-1 & 0 & 0
\end{array}\right]
$$

Properties of Determinants

1. $|A|=\left|A^{\prime}\right|$
2. Interchanging rows or columns will alter the sign but not the value
3. Multiplication of any one row (or one column) by a scalar k will change the value of the determinant k-fold
4. The addition (subtraction) of a multiple of any row (or column) to (from) another row (or column) will leave the determinant unaltered
5. If one row (or column) is a multiple of another row (or column), the value of the determinant will be zero.

Verify the above properties for a 2×2 matrix:

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

The minor of the element $a_{i j}$, denoted by $\left|M_{i j}\right|$ is obtained by deleting the i th row and j th column of the matrix and taking the determinant of the resulting matrix.

Whereas, cofactor $\left|C_{i j}\right|$ is defined as:

$$
\left|C_{i j}\right|=(-1)^{i+j}\left|M_{i j}\right|
$$

Example.

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Minor for the element a_{12} :

$$
\left|M_{12}\right|=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
$$

Cofactor for the element a_{12} :

$$
\left|C_{12}\right|=(-1)^{(1+2)}\left|M_{12}\right|=-\left|M_{12}\right|
$$

Find $\left|C_{31}\right|,\left|C_{32}\right|$, and $\left|C_{33}\right|$ for

$$
A=\left[\begin{array}{ccc}
1 & 5 & 1 \\
0 & 3 & 9 \\
-1 & 0 & 0
\end{array}\right]
$$

Determinant for an $n \times n$ matrix is given by:

$$
|A|=\sum_{i=1}^{n} a_{i j}\left|C_{i j}\right|=\sum_{j=1}^{n} a_{i j}\left|C_{i j}\right|
$$

The first expression corresponds to expanding with respect to the j th column, while the second expression is the expression for the determinant when expanding with respect to the i th row.

Find the determinant of $|A|$ by expanding with the third row.

$$
A=\left[\begin{array}{ccc}
1 & 5 & 1 \\
0 & 3 & 9 \\
-1 & 0 & 0
\end{array}\right]
$$

To find the inverse of a nonsingular matrix A take the transpose of its cofactor matrix $C=\left[\left|C_{i j}\right|\right]$ to find the adjoint of A and divide it by the determinant of A.

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

Adjoint of a nonsingular $n \times n$ matrix

$$
\operatorname{adj} A=C^{\prime}=\left[\begin{array}{llll}
\left|C_{11}\right| & \left|C_{21}\right| & \ldots & \left|C_{n 1}\right| \\
\left|C_{12}\right| & \left|C_{22}\right| & \ldots & \left|C_{n 2}\right| \\
\vdots & \vdots & \ldots & \vdots \\
\left|C_{1 n}\right| & \left|C_{2 n}\right| & \ldots & \left|C_{n n}\right|
\end{array}\right]
$$

Find the inverse of

$$
A=\left[\begin{array}{ccc}
1 & 5 & 1 \\
0 & 3 & 9 \\
-1 & 0 & 0
\end{array}\right]
$$

