ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 3: Linear Algebra

Inverse of a Matrix

For a square matrix A, it's inverse A^{-1} is defined as:

$$
A A^{-1}=A^{-1} A=I
$$

Squareness is a necessary condition not a sufficient condition
If a matrix's inverse exists, it's called a nonsingular matrix

Inverse of a Matrix

If an inverse exists, it is unique.
Proof by contradiction. Let's say $B=A^{-1}$ and $C=A^{-1}$. Then,

$$
\begin{aligned}
& A B=B A=1 \\
& A C=C A=1
\end{aligned}
$$

Pre-multiply both sides by B,

$$
B A C=B C A=B I \Longrightarrow C=B
$$

Solution of Linear-Equation System

$$
A x=b
$$

Pre-multiply both sides by A^{-1},

$$
A^{-1} A x=A^{-1} b \quad \Longrightarrow x=A^{-1} b
$$

If A is singular, a unique solution does not exist.

Conditions for Nonsingularity

Squareness is necessary but not sufficient
Sufficient condition for nonsingularity:
Rows (or equivalently) columns are linearly independent
Example.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Conditions for Nonsingularity

Squareness is necessary but not sufficient
Sufficient condition for nonsingularity:
Rows (or equivalently) columns are linearly independent
Example.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

A is singular, B is nonsingular.

Conditions for Nonsingularity

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad d=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

We have a system of linear equations:

$$
A x=d
$$

Then,

$$
\begin{gathered}
x_{1}+2 x_{2}=a \\
2 x_{1}+4 x_{2}=b
\end{gathered}
$$

Conditions for Nonsingularity

$$
\begin{gathered}
x_{1}+2 x_{2}=a \\
2 x_{1}+4 x_{2}=b
\end{gathered}
$$

For these equations to be consistent, we need $b=2 a$:

$$
\begin{aligned}
x_{1}+2 x_{2} & =a \\
2 x_{1}+4 x_{2} & =2 a
\end{aligned}
$$

Both are the same equation, infinite number of solutions.

Conditions for Nonsingularity

To summarize, for a matrix to be nonsingular (i.e. its inverse exists):

Necessary condition: Squareness

Sufficient condition: Rows or (equivalently) columns are linearly independent

Rank of a Matrix

Rank of a matrix = maximum number of linearly independent rows

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

Rank of A ? Rank of B ?

Rank of a Matrix

Rank of a matrix = maximum number of linearly independent rows

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

Rank of A ? Rank of B ?
Full rank \Longleftrightarrow Nonsingularity

Checking for Linear Independence

Echelon form of a matrix.

- First row: all elements can be non-zero
- Second row: first element 0
- Third row: first two elements 0
- Last row: first $m-1$ elements zero

Checking for Linear Independence

Echelon form of a 2×2 matrix.

$$
A=\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}
\end{array}\right]
$$

Checking for Linear Independence

Echelon form of a 3×3 matrix.

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]
$$

Checking for Linear Independence

Valid operations to convert to echelon form:

- Interchange any two rows
- Multiplication (or division) of a row by a scalar $k \neq 0$
- Addition of a (or k times of a) row to another

Converting to Echelon Form

Given matrix:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Target elements in order:

$$
\left[\begin{array}{cll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
0 & b_{32} & b_{33}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
0 & c_{22} & c_{23} \\
0 & c_{32} & c_{33}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
d_{11} & d_{12} & d_{13} \\
0 & d_{22} & d_{23} \\
0 & 0 & d_{33}
\end{array}\right]
$$

Checking for Linear Independence

Convert to echelon form to check for linear independence.
Example.

$$
A=\left[\begin{array}{ccc}
0 & -1 & -4 \\
3 & 1 & 2 \\
6 & 1 & 0
\end{array}\right]
$$

Checking for Linear Independence

Echelon form, similar to solving by substitution.
In our original example,

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

Checking for Linear Independence

Consider augmented matrix:

$$
A=\left[\begin{array}{cc|c}
1 & 2 & 100 \\
1 & -3 & 20
\end{array}\right]
$$

Reduce to echelon form:

$$
\begin{aligned}
A & =\left[\begin{array}{cc|c}
1 & 2 & 100 \\
0 & -5 & -80
\end{array}\right] \\
q+2 p & =100 \quad-5 p=-80
\end{aligned}
$$

Checking for Nonsingularity

Rank of a matrix = maximum number of linearly independent rows or (equivalently) columns

If a square matrix has full rank, it is nonsingular.
To check for nonsingularity or finding rank: echelon form.
Alternatively, calculate the determinant to check for nonsingularity. For singular matrices, the determinant is zero.

Determinant

Determinant $|A|$ is a unique scalar associated with a square matrix A.

Determinant of a 2×2 Matrix:

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Can be calculated as:

$$
|A|=a_{11} a_{22}-a_{12} a_{21}
$$

Determinant of a 3×3 Matrix

$$
\begin{aligned}
|A| & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Determinant of a $n \times n$ Matrix

A minor of the element $a_{i j}$, denoted by $\left|M_{i j}\right|$ is obtained by deleting the i th row and j th column.

Cofactor $C_{i j}$ is defined as:

$$
\left|C_{i j}\right|=(-1)^{i+j}\left|M_{i j}\right|
$$

Then,

$$
|A|=\sum_{i=1}^{n} a_{i j}\left|C_{i j}\right|=\sum_{j=1}^{n} a_{i j}\left|C_{i j}\right|
$$

References and Homework Problems

- New references for today: 5.1, 5.2
- Homework problems:
- Exercise 5.1: 3, 4, 5, 6
- Exercise 5.2: 1 (c) (e) (f), 2, 3, 6

