Homework 2 Solutions

Exercise 4.2

1. $A=\left[\begin{array}{cc}7 & -1 \\ 6 & 9\end{array}\right] \quad B=\left[\begin{array}{cc}0 & 4 \\ 3 & -2\end{array}\right] \quad C=\left[\begin{array}{ll}8 & 3 \\ 6 & 1\end{array}\right]$
(a) $A+B=\left[\begin{array}{ll}7 & 3 \\ 9 & 7\end{array}\right]$
(b) $C-A=\left[\begin{array}{cc}1 & 4 \\ 0 & -8\end{array}\right]$
(c) $3 A=\left[\begin{array}{ll}21 & -3 \\ 18 & 27\end{array}\right]$
(d) $4 B+2 C=\left[\begin{array}{cc}0 & 16 \\ 12 & -8\end{array}\right]+\left[\begin{array}{ll}16 & 6 \\ 12 & 2\end{array}\right]=\left[\begin{array}{cc}16 & 22 \\ 24 & -6\end{array}\right]$
2. $A=\left[\begin{array}{ll}2 & 8 \\ 3 & 0 \\ 5 & 1\end{array}\right] \quad B=\left[\begin{array}{ll}2 & 0 \\ 3 & 8\end{array}\right] \quad C=\left[\begin{array}{ll}7 & 2 \\ 6 & 3\end{array}\right]$
(a) $A B$ is defined as number of columns in A is two which is equal to the number of rows in B.

$$
A B=\left[\begin{array}{ll}
2 \times 2+8 \times 3 & 2 \times 0+8 \times 8 \\
3 \times 2+6 \times 3 & 3 \times 0+0 \times 0 \\
5 \times 2+1 \times 3 & 5 \times 0+1 \times 8
\end{array}\right]=\left[\begin{array}{cc}
28 & 64 \\
6 & 0 \\
13 & 8
\end{array}\right]
$$

Not possible to calculate BA as B has two columns, but A has three rows.
(b) $B C$ and $C B$ are both defined as both have two rows and two columns.

$$
B C=\left[\begin{array}{ll}
14 & 4 \\
69 & 30
\end{array}\right] \neq C B=\left[\begin{array}{ll}
20 & 16 \\
21 & 24
\end{array}\right]
$$

4.

(a) $\left[\begin{array}{cc}0 & 2 \\ 36 & 20 \\ 16 & 3\end{array}\right]_{3 \times 2}$
(b) $\left[\begin{array}{ll}49 & 3 \\ 4 & 3\end{array}\right]_{2 \times 2}$
(c) $\left[\begin{array}{l}3 x+5 y \\ 4 x+2 y-7 z\end{array}\right]_{2 \times 1}$
(d) $[7 a+c \quad 2 b+4 c]$

Exercise 4.4

5. (e)

$$
\begin{aligned}
& A=\left[\begin{array}{c}
-2 \\
4 \\
7
\end{array}\right]_{3 \times 1} B=\left[\begin{array}{lll}
3 & 6 & -2
\end{array}\right]_{1 \times 3} \\
& C=A B=\left[\begin{array}{ccc}
-6 & -12 & 4 \\
12 & 24 & -8 \\
21 & 42 & -14
\end{array}\right] \\
& D=B A=[3 \times-2+6 \times 4+-2 \times 7]=[4]
\end{aligned}
$$

7. In example 5, $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $A=\left[\begin{array}{cc}a_{11} & 0 \\ 0 & a_{22}\end{array}\right]$. In which case,

$$
\begin{aligned}
& x^{\prime} A x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{2 \times 1} \\
& =\left[\begin{array}{ll}
a_{11} x_{1} & a_{22} x_{2}
\end{array}\right]_{1 \times 2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{2 \times 1} \\
& =\underbrace{a_{11} x_{1}^{2}+a_{22} x_{2}^{2}}_{\text {Weighted sum of squares }}=\sum_{i=1}^{2} a_{i i} x_{i}^{2}
\end{aligned}
$$

So $x^{\prime} A x$ represents a weighted sum of squares where a_{11}, a_{22} are weights.

But now what if $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. In this case,

$$
\begin{aligned}
& x^{\prime} A x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]_{2 \times 2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{2 \times 1} \\
& =\left[a_{11} x_{1}+a_{21} x_{2} \quad a_{12} x_{1}+a_{22} x_{2}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{2 \times 1} \\
& =a_{11} x_{1}^{2}+a_{21} x_{1} x_{2}+a_{12} x_{1} x_{2}+a_{22} x_{2}^{2} \\
& =a_{11} x_{1}^{2}+\left(a_{21}+a_{12}\right) x_{1} x_{2}+a_{22} x_{2}^{2}
\end{aligned}
$$

So $x^{\prime} A x$ no longer represents a weighted sum of squares.

You can check that the associative law i.e.

$$
\left(x^{\prime} A\right) x=x^{\prime}(A x)
$$

will apply in both cases (after all, its a law!) as all products are possible.

Exercise 4.5

1.

$$
A=\left[\begin{array}{ccc}
-1 & 5 & 7 \\
0 & -2 & 4
\end{array}\right]_{2 \times 3} \quad B=\left[\begin{array}{l}
9 \\
6 \\
0
\end{array}\right]_{3 \times 1} \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{2 \times 1}
$$

(a) $A I=\left[\begin{array}{ccc}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]_{3 \times 3}=\left[\begin{array}{ccc}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right]=A$
(b) $I A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]_{2 \times 2}\left[\begin{array}{ccc}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right]=\left[\begin{array}{rrr}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right]$
(c) $I x=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]_{2 \times 2}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$
(d) $x^{\prime} I=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]_{2 \times 2}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]$
4. Let's start with a 2×2 diagonal matrix

$$
\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right]\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
a_{11}^{2} & 0 \\
0 & a_{22}^{2}
\end{array}\right]
$$

$x=x^{2}$ for only $x=0,1$ so a_{11} and a_{22} can either be 0 or 1 . So we can have the following 2×2 idempotent diagonal matrices:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

More generally, for $n \times n$ matrix, there can be 2^{n} such matrices. This is because there will be n elements, each of which can take two values.

Exercise 4.6

2. $A=\left[\begin{array}{cc}0 & 4 \\ -1 & 3\end{array}\right] \quad B=\left[\begin{array}{cc}3 & -8 \\ 0 & 1\end{array}\right] \quad C=\left[\begin{array}{lll}1 & 0 & 9 \\ 6 & 1 & 1\end{array}\right]$
(a) $A+B=\left[\begin{array}{cc}3 & -4 \\ -1 & 4\end{array}\right]$
$A^{\prime}+B^{\prime}=\left[\begin{array}{rr}0 & -1 \\ 4 & 3\end{array}\right]+\left[\begin{array}{cc}3 & 0 \\ -8 & 1\end{array}\right]=\left[\begin{array}{cc}3 & -1 \\ -4 & 4\end{array}\right]$
So, $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(b) $A C=\left[\begin{array}{cc}0 & 4 \\ -1 & 3\end{array}\right]_{2 \times 2}\left[\begin{array}{lll}1 & 0 & 9 \\ 6 & 1 & 1\end{array}\right]_{2 \times 3}=\left[\begin{array}{ccc}24 & 4 & 4 \\ 17 & 3 & -6\end{array}\right]_{2 \times 3}$

$$
C^{\prime} A^{\prime}=\left[\begin{array}{ll}
1 & 6 \\
0 & 1 \\
9 & 1
\end{array}\right]_{3 \times 2}\left[\begin{array}{cc}
0 & -1 \\
4 & 3
\end{array}\right]_{2 \times 2}=\left[\begin{array}{cc}
24 & 17 \\
4 & 3 \\
4 & -6
\end{array}\right]_{3 \times 2}
$$

So, $(A C)^{\prime}=C^{\prime} A^{\prime}$.
6. $A=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$
(a.) Say the dimension of X is $m \times n$. Then the dimension of $X_{n \times m}^{\prime} X_{m \times n}$ is $n \times n$. So the dimension of $\left(X^{\prime} X\right)^{-1}$ is also $n \times n$. This implies that the dimension of $X_{m \times n}\left(X^{\prime} X\right)_{n \times n}^{-1} X_{n \times m}^{\prime}$ is $m \times m$. Hence, $X^{\prime} X$ and A must be square matrices, but X need not be square.
(b.) To prove a matrix is idempotent, we need to show $A A=A$.

$$
\begin{aligned}
A A & =\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right)\left(I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}-X\left(X^{\prime} X\right)^{-1} X^{\prime}+X \underbrace{\left(X^{\prime} X\right)^{-1} X^{\prime} X}_{I}\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}-X\left(X^{\prime} X\right)^{-1} X^{\prime}+X\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}=A
\end{aligned}
$$

