Homework 2 Problems

ECON 441: Introduction to Mathematical Economics

Instructor: Div Bhagia

Exercise 4.2

1. Given
$$A = \begin{bmatrix} 7 & -1 \\ 6 & 9 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 4 \\ 3 & -2 \end{bmatrix}$, and $C = \begin{bmatrix} 8 & 3 \\ 6 & 1 \end{bmatrix}$, find:
(a) $A + B$
(b) $C - A$
(c) $3A$
(d) $4B + 2C$
 $\begin{bmatrix} 2 & 8 \end{bmatrix}$
 $\begin{bmatrix} 2 & 0 \end{bmatrix}$
 $\begin{bmatrix} 2 & 0 \end{bmatrix}$
 $\begin{bmatrix} 7 & 2 \end{bmatrix}$

2. Given
$$A = \begin{bmatrix} 2 & 0 \\ 3 & 0 \\ 5 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix}$, and $C = \begin{bmatrix} 7 & 2 \\ 6 & 3 \end{bmatrix}$

- (a) Is AB defined? Calculate AB. Can you calculate BA? Why?
- (b) Is *BC* defined? Calculate *BC*. Is *CB* defined? If so, calculate *CB*. Is it true that BC = CB.
- 4. Find the product matrices in the following (in each case, append beneath every matrix a dimension indicator):

(a)	$\begin{bmatrix} 0 & 2 & 0 \\ 3 & 0 & 4 \\ 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 1 \\ 3 & 5 \end{bmatrix}$	(b) $\begin{bmatrix} 6 & 5 & -1 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 5 & 2 \\ 0 & 1 \end{bmatrix}$
(c)	$\begin{bmatrix} 3 & 5 & 0 \\ 4 & 2 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	$ (d) \left[\begin{array}{ccc} a & b & c \end{array} \right] \left[\begin{array}{ccc} 7 & 0 \\ 0 & 2 \\ 1 & 4 \end{array} \right] $

Exercise 4.4

5. (e) Find (i) C = AB, and (ii) D = BA, if

$$A = \begin{bmatrix} -2\\ 4\\ 7 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 6 & -2 \end{bmatrix}$$

7. If the matrix *A* in Example 5 had all its four elements nonzero, would *x*'*Ax* still give a weighted sum of squares? Would the associative law still apply?

Exercise 4.5

1. Given
$$A = \begin{bmatrix} -1 & 5 & 7 \\ 0 & -2 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 9 \\ 6 \\ 0 \end{bmatrix}$, and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$:

Calculate: (a) AI (b) IA (c) Ix (d) x'IIndicate the dimension of the identity matrix used in each case.

- 4. Show that the diagonal matrix
 - $\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$

can be idempotent only if each diagonal element is either 1 or 0. How many different numerical idempotent diagonal matrices of dimension $n \times n$ can be constructed altogether from such a matrix?

Exercise 4.6

2. Given
$$A = \begin{bmatrix} 0 & 4 \\ -1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -8 \\ 0 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 0 & 9 \\ 6 & 1 & 1 \end{bmatrix}$, verify that
(a) $(A + B)' = A' + B'$
(b) $(AC)' = C'A'$

6. Let $A = I - X (X'X)^{-1} X'$.

- (a) Must A be square? Must (X'X) be square? Must X be square?
- (b) Show that matrix *A* is idempotent.