Homework 2 Problems

Exercise 4.2

1. Given $A=\left[\begin{array}{cc}7 & -1 \\ 6 & 9\end{array}\right], B=\left[\begin{array}{cc}0 & 4 \\ 3 & -2\end{array}\right]$, and $C=\left[\begin{array}{ll}8 & 3 \\ 6 & 1\end{array}\right]$, find:
(a) $A+B$
(b) $C-A$
(c) 3 A
(d) $4 B+2 C$
2. Given $A=\left[\begin{array}{ll}2 & 8 \\ 3 & 0 \\ 5 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 0 \\ 3 & 8\end{array}\right]$, and $C=\left[\begin{array}{ll}7 & 2 \\ 6 & 3\end{array}\right]$:
(a) Is $A B$ defined? Calculate $A B$. Can you calculate $B A$? Why?
(b) Is $B C$ defined? Calculate $B C$. Is $C B$ defined? If so, calculate $C B$. Is it true that $B C=C B$.
3. Find the product matrices in the following (in each case, append beneath every matrix a dimension indicator):
(a) $\left[\begin{array}{lll}0 & 2 & 0 \\ 3 & 0 & 4 \\ 2 & 3 & 0\end{array}\right]\left[\begin{array}{ll}8 & 0 \\ 0 & 1 \\ 3 & 5\end{array}\right]$
(b) $\left[\begin{array}{rrr}6 & 5 & -1 \\ 1 & 0 & 4\end{array}\right]\left[\begin{array}{rr}4 & -1 \\ 5 & 2 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{rrr}3 & 5 & 0 \\ 4 & 2 & -7\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
(d) $\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{ll}7 & 0 \\ 0 & 2 \\ 1 & 4\end{array}\right]$

Exercise 4.4

5. (e) Find (i) $C=A B$, and (ii) $D=B A$, if

$$
A=\left[\begin{array}{r}
-2 \\
4 \\
7
\end{array}\right] \quad B=\left[\begin{array}{lll}
3 & 6 & -2
\end{array}\right]
$$

7. If the matrix A in Example 5 had all its four elements nonzero, would $x^{\prime} A x$ still give a weighted sum of squares? Would the associative law still apply?

Exercise 4.5

1. Given $A=\left[\begin{array}{rrr}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right], b=\left[\begin{array}{l}9 \\ 6 \\ 0\end{array}\right]$, and $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$:

Calculate: (a) $A I \quad$ (b) $I A$ (c) $I x$ (d) $x^{\prime} I$
Indicate the dimension of the identity matrix used in each case.
4. Show that the diagonal matrix

$$
\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

can be idempotent only if each diagonal element is either 1 or 0 . How many different numerical idempotent diagonal matrices of dimension $n \times n$ can be constructed altogether from such a matrix?

Exercise 4.6

2. Given $A=\left[\begin{array}{rr}0 & 4 \\ -1 & 3\end{array}\right], B=\left[\begin{array}{rr}3 & -8 \\ 0 & 1\end{array}\right]$, and $C=\left[\begin{array}{lll}1 & 0 & 9 \\ 6 & 1 & 1\end{array}\right]$, verify that
(a) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(b) $(A C)^{\prime}=C^{\prime} A^{\prime}$
3. Let $A=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$.
(a) Must A be square? Must $\left(X^{\prime} X\right)$ be square? Must X be square?
(b) Show that matrix A is idempotent.
