ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 2: Linear Algebra

A Simple Economic Model

q : quantity of hats, p : price of a single hat
Demand for hats: $q=100-2 p$

A Simple Economic Model

q : quantity of hats, p : price of a single hat
Supply for hats: $q=20+3 p$

A Simple Economic Model

q : quantity of hats, p : price of a single hat
Demand for hats:

$$
q=100-2 p
$$

Supply for hats:

$$
q=20+3 p
$$

Equilibrium: At what price will both demand and supply be equal?

Equilibrium

Equilibrium: At what price will both demand and supply be equal?

$$
100-2 p=20+3 p \rightarrow p^{*}=\$ 16
$$

Equilibrium

Equilibrium: At what price will both demand and supply be equal?

$$
100-2 p=20+3 p \rightarrow p^{*}=\$ 16
$$

What is the quantity traded at this price?

$$
q^{*}=100-2 \times 16=20+3 \times 16=68
$$

q^{*} and p^{*} are determined simultaneously.

Equilibrium

Matrix Algebra

We solved a system of two (linear) equations in two variables.
Complex economic models: multiple equations with multiple variables

Hard to just wing it... Enter, Matrix Algebra!
Matrix Algebra can help us write complex system of equations compactly and solve them

A Simple Economic Model

q : quantity of hats, p : price of a single hat
Demand for hats: $q=100-2 p$
Supply for hats: $q=20+3 p$
Rewrite the two equations:

$$
\begin{aligned}
& q+2 p=100 \\
& q-3 p=20
\end{aligned}
$$

A Simple Economic Model

Two equations in two unknowns:

$$
\begin{aligned}
& q+2 p=100 \\
& q-3 p=20
\end{aligned}
$$

Can write this as:

$$
A x=b
$$

where

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

These arrays are called matrices.

Today

- Matrices: Addition, Subtraction, and Scalar Multiplication
- Matrix Multiplication
- Vectors
- Identity and Null Matrices
- Transpose and Inverse of a Matrix

Textbook reference: 4.1-4.6

Matrices

A matrix is a rectangular array of numbers, parameters, or vectors.

Example. $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ -1 & 4 & 6\end{array}\right]$

Dimensions of matrix:

- Number of rows (m)
- Number of columns (n)

Matrices

A matrix with m rows and n columns is referred to as an $m \times n$ matrix

What's the dimension of A ?

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 4 & 6
\end{array}\right]
$$

Matrices

A matrix with m rows and n columns is referred to as an $m \times n$ matrix

What's the dimension of A ?

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 4 & 6
\end{array}\right]_{2 \times 3}
$$

Matrices

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right]
$$

Can write it more compactly

$$
A=\left[a_{i j}\right] \quad i=1,2, \ldots, m ; j=1,2, \ldots, n
$$

Matrices

Square matrix: equal number of rows and columns
Example.

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]_{3 \times 3}
$$

Matrices

Two matrices are equal if all their elements are identical.
Example.

$$
A=\left[\begin{array}{cc}
1 & 8 \\
4 & -1
\end{array}\right] \neq\left[\begin{array}{ll}
1 & 8 \\
4 & 2
\end{array}\right]
$$

So $A=B$ if and only if $a_{i j}=b_{i j}$ for all i, j

Matrix Addition and Subtraction

- How to add or take the difference between two matrices?
\rightarrow Element-by-element
\rightarrow Matrices have to have same dimension

Example.

$$
A=\left[\begin{array}{cc}
2 & 3 \\
4 & -6
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 8 \\
-2 & 3
\end{array}\right]
$$

- What is $A+B$ and $A-B$?

Scalar Multiplication

How to multiply a scalar to a matrix?

$$
\lambda\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=\left[\begin{array}{lll}
\lambda a_{11} & \lambda a_{12} & \lambda a_{13} \\
\lambda a_{21} & \lambda a_{22} & \lambda a_{23}
\end{array}\right]
$$

Example.

$$
A=\left[\begin{array}{cc}
2 & 3 \\
4 & -6
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 8 \\
-2 & 3
\end{array}\right]
$$

What is $2 B$ and $A-2 B$?

Matrix Multiplication

A whole new animal...

Only possible to multiply two matrices, $A_{m \times n}$ and $B_{p \times q}$ to get $A B$ if $n=p$ i.e.
number of columns in $A=$ number of rows in B

Example. $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ 4 & -6 & -2\end{array}\right]_{2 \times 3} \quad B=\left[\begin{array}{cc}1 & 8 \\ -2 & 3\end{array}\right]_{2 \times 2}$
Cannot do $A B$, but can do $B A$

Matrix Multiplication

Another example.

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & -2
\end{array}\right]_{2 \times 3} \quad B=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]_{3 \times 1}
$$

Can we multiply A and B to find $C=A B$?

Matrix Multiplication

Another example.

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & -2
\end{array}\right]_{2 \times 3} B=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]_{3 \times 1}
$$

Can we multiply A and B to find $C=A B$?
Yes, since A has 3 rows which is equal to the number of columns in B.

Also, the dimension of C will be 2×1.

Matrix Multiplication

So how to actually multiply these matrices?

$$
\begin{gathered}
C=A B \\
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}
\end{gathered}
$$

The element $c_{i j}$ is obtained by multiplying term-by-term the entries of the i th row of A and j th column of B.

Matrix Multiplication: Examples

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]_{2 \times 3} \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right]_{3 \times 2}
$$

Here,

$$
C=A B=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}
\end{array}\right]_{2 \times 2}
$$

Matrix Multiplication: Examples

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & -2
\end{array}\right]_{2 \times 3} B=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]_{3 \times 1}
$$

Matrix Multiplication: Examples

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & -2
\end{array}\right]_{2 \times 3} B=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]_{3 \times 1} \\
C=A B=\left[\begin{array}{c}
2 \times 1+3 \times-2+1 \times 4 \\
4 \times 1+-6 \times-2+-2 \times 4
\end{array}\right]_{2 \times 1}=\left[\begin{array}{l}
0 \\
8
\end{array}\right]_{2 \times 1}
\end{gathered}
$$

Matrix Multiplication: Examples

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 8 \\
4 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
5 \\
9
\end{array}\right]
$$

A Simple Economic Model

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

What is $A x$?

A Simple Economic Model

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

What is $A x$?

$$
A x=\left[\begin{array}{l}
q+2 p \\
q-3 p
\end{array}\right]
$$

A Simple Economic Model

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right] \quad x=\left[\begin{array}{l}
q \\
p
\end{array}\right] \quad b=\left[\begin{array}{c}
100 \\
20
\end{array}\right]
$$

What is $A x$?

$$
A x=\left[\begin{array}{l}
q+2 p \\
q-3 p
\end{array}\right]
$$

Setting $A x=b$ gives us back our demand and supply equations.

Vectors

- Matrices with only one column: column vectors

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- Matrices with only one row: row vectors

$$
x^{\prime}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]
$$

Inner Product

Inner product of two vectors each with n elements:

$$
u \cdot v=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}=\sum_{i=1}^{n} u_{i} v_{i}
$$

Example.

$$
u=\left[\begin{array}{l}
1 \\
5 \\
2
\end{array}\right] \quad v=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]
$$

Linear Dependence

A set of vectors is said to be linearly dependent if and only if any one of them can be expressed as a linear combination of the remaining vectors.

Example.

$$
v_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

Linear Dependence

A set of vectors is said to be linearly dependent if and only if any one of them can be expressed as a linear combination of the remaining vectors.

Example.

$$
v_{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad v_{3}=\left[\begin{array}{c}
1 \\
-4
\end{array}\right]
$$

Linear Dependence

A set of m-vectors $v_{1}, v_{2}, \ldots, v_{n}$ is linearly dependent if and only if there exists a set of scaler $k_{1}, k_{2}, \ldots, k_{n}$ (not all zero) such that:

$$
\sum_{i=1}^{n} k_{i} v_{i}=0 \quad(m \times 1)
$$

Identity Matrices

Square matrix with 1 s in its principal diagonal and 0s elsewhere
A 2×2 identity matrix:

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

A 3×3 identity matrix:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Identity Matrices

Acts like 1,

$$
A I=I A=A
$$

Example.

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & 2
\end{array}\right]
$$

Idempotent Matrices

A matrix is an idempotent matrix if it remains unchanged when multiplied by itself any number of times.
A is idempotent if and only if $A=A^{k}$.
Is an identity matrix idempotent?

Null Matrix

A null matrix is a matrix with all elements 0 .

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- $A+0=A$
- $A 0=0$

Transpose of a Matrix

Transpose of $\mathrm{A}\left(A^{\prime}\right.$ or $\left.A^{T}\right)$: interchange rows and columns

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -6 & 2
\end{array}\right]
$$

Transpose of a Matrix

- A matrix A is said to be symmetric if

$$
A^{\prime}=A
$$

- A matrix A is said to be skew-symmetric if

$$
A^{\prime}=-A
$$

- A matrix A is said to be orthogonal if

$$
A^{\prime} A=I
$$

Example: Symmetric Matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 0 \\
2 & 3 & -5 \\
0 & -5 & 4
\end{array}\right]
$$

Example: Skew-symmetric Matrix

$$
A=\left[\begin{array}{ccc}
0 & -1 & 3 \\
1 & 0 & -4 \\
-3 & 4 & 0
\end{array}\right]
$$

Example: Orthogonal Matrix

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Properties of Transposes

$$
\begin{aligned}
& \left(A^{\prime}\right)^{\prime}=A \\
& (A+B)^{\prime}=A^{\prime}+B^{\prime} \\
& (A B)^{\prime}=B^{\prime} A^{\prime}
\end{aligned}
$$

Example: $A=\left[\begin{array}{ll}4 & 1 \\ 9 & 0\end{array}\right] \quad B=\left[\begin{array}{ll}2 & 0 \\ 7 & 1\end{array}\right]$

Inverse of a Matrix

For a square matrix A, it's inverse A^{-1} is defined as:

$$
A A^{-1}=A^{-1} A=I
$$

Squareness is a necessary condition not a sufficient condition If a matrix's inverse exists, it's called a nonsingular matrix

Properties of Inverses

$$
\begin{gathered}
\left(A^{-1}\right)^{-1}=A \\
(A B)^{-1}=B^{-1} A^{-1} \\
\left(A^{\prime}\right)^{-1}=\left(A^{-1}\right)^{\prime}
\end{gathered}
$$

Solution of Linear-Equation System

$$
A x=b
$$

Solution of Linear-Equation System

$$
A x=b
$$

Pre-multiply both sides by A^{-1},

$$
A^{-1} A x=A^{-1} b \quad \Longrightarrow x=A^{-1} b
$$

Solution of Linear-Equation System

$$
A x=b
$$

Pre-multiply both sides by A^{-1},

$$
A^{-1} A x=A^{-1} b \quad \Longrightarrow x=A^{-1} b
$$

If A is singular, a unique solution does not exist.

Conditions for Nonsingularity

Squareness is necessary but not sufficient
Sufficient condition for nonsingularity:
Rows (or equivalently) columns are linearly independent
Example.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Conditions for Nonsingularity

Squareness is necessary but not sufficient
Sufficient condition for nonsingularity:
Rows (or equivalently) columns are linearly independent
Example.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

A is singular, B is nonsingular.

Conditions for Nonsingularity

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad d=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

We have a system of linear equations:

$$
A x=d
$$

Then,

$$
\begin{gathered}
x_{1}+2 x_{2}=a \\
2 x_{1}+4 x_{2}=b
\end{gathered}
$$

Conditions for Nonsingularity

$$
\begin{gathered}
x_{1}+2 x_{2}=a \\
2 x_{1}+4 x_{2}=b
\end{gathered}
$$

For these equations to be consistent, we need $b=2 a$:

$$
\begin{aligned}
x_{1}+2 x_{2} & =a \\
2 x_{1}+4 x_{2} & =2 a
\end{aligned}
$$

Both are the same equation, infinite number of solutions.

Conditions for Nonsingularity

To summarize, for a matrix to be nonsingular (i.e. its inverse exists):

Necessary condition: Squareness
Sufficient condition: Rows or (equivalently) columns are linearly independent

Homework Problems

- Exercise 4.2: 1, 2, 4
- Exercise 4.4: 5 (e), 7
- Exercise 4.5: 1, 4
- Exercise 4.6: 2, 6

Reminder: Quiz 1 is next week.

