Homework 11 Solutions

ECON 441: Introduction to Mathematical Economics
Instructor: Div Bhagia

Exercise 11.5

1. (a) $y=x^{2}$

Take two distinct points x_{1} and x_{2} and $0<\lambda<1$, then

$$
\begin{align*}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) & =\left(\lambda x_{1}+(1-\lambda) x_{2}\right)^{2} \\
& =\lambda^{2} x_{1}^{2}+(1-\lambda)^{2} x_{2}^{2}+2 \lambda(1-\lambda) x_{1} x_{2} \tag{1}
\end{align*}
$$

Also note that,

$$
\begin{equation*}
\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)=\lambda x_{1}^{2}+(1-\lambda) x_{2}^{2} \tag{2}
\end{equation*}
$$

Subtracting (2) from (1)

$$
\begin{aligned}
(1)-(2) & =\lambda^{2} x_{1}^{2}+(1-\lambda)^{2} x_{2}^{2}+2 \lambda(1-\lambda) x_{1} x_{2}-\lambda x_{1}^{2}-(1-\lambda) x_{2}^{2} \\
& =\lambda(\lambda-1) x_{1}^{2}-(1-\lambda) \lambda x_{2}^{2}+2 \lambda(1-\lambda) x_{1} x_{2} \\
& =\lambda(\lambda-1)\left(x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}\right) \\
& =\lambda(\lambda-1)\left(x_{1}+x_{2}\right)^{2}<0
\end{aligned}
$$

Since $(1)-(2)<0$,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

So f is strictly convex.
2. (c) $f(x, y)=x y$

Take two distinct points u and v and $0<\lambda<1$, then

$$
\begin{align*}
f(\lambda u+(1-\lambda) v) & =f\left(\lambda u_{1}+(1-\lambda) v_{1}, \lambda u_{2}+(1-\lambda) v_{2}\right) \\
& =\left(\lambda u_{1}+(1-\lambda) v_{1}\right)\left(\lambda u_{2}+(1-\lambda) v_{2}\right) \tag{3}\\
& =\lambda^{2} u_{1} u_{2}+\lambda(1-\lambda) v_{1} u_{2}+\lambda(1-\lambda) u_{1} v_{2}+(1-\lambda)^{2} v_{1} v_{2}
\end{align*}
$$

Also note that,

$$
\begin{equation*}
\lambda f(u)+(1-\lambda) f(v)=\lambda u_{1} u_{2}+(1-\lambda) v_{1} v_{2} \tag{4}
\end{equation*}
$$

Subtracting (4) from (3)

$$
\begin{aligned}
(4)-(3) & =\lambda(\lambda-1) u_{1} u_{2}+\lambda(1-\lambda) v_{1} u_{2}+\lambda(1-\lambda) u_{1} v_{2}-(1-\lambda) \lambda v_{1} v_{2} \\
& =\lambda(\lambda-1)\left[u_{1} u_{2}-v_{1} u_{2}-u_{1} v_{2}+v_{1} v_{2}\right] \\
& \left.=\lambda(\lambda-1)\left(\left(u_{1}-v_{1}\right) u_{2}-\left(u_{1}-v_{1}\right) v_{2}\right)\right] \\
& =\lambda(\lambda-1)\left(u_{1}-v_{1}\right)\left(u_{2}-v_{2}\right)
\end{aligned}
$$

Since $(1)-(2)<0$,

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

$f($.$) is neither concave nor convex as (1) \geq(2)$ sometimes and (1) $\leq(2)$ other times.
4. (a) No
(b) No
(c) Yes
5. (a)
(a)

Exercise 12.4

1. Examples of acceptable curves:
(a) 2

\times

${ }_{x}^{2}$
(b)

(c) z
 ${ }^{x}$

(d)

x

(e) z

(f)

2. (a) $f(x)=a$

Quasiconcave but not strictly so because for u, v s.t $f(u) \geqslant f(v)$:

$$
f(\lambda u+(1-\lambda) v)=f(v)=a
$$

(b) $f(x)=a+b x \quad(b>0)$

For any point between u and v given by $\lambda u+(1-\lambda) v$, the value of the function $f(\lambda u+(1-\lambda) v)$ will be strictly greater than $f(u)$ as f is a strictly increasing
function. So $f($.$) is strictly quasiconcave.$
(c) $f(x)=a+c x^{2} \quad(c<0)$

To draw this function, let's calculate the first and the second derivatives:

$$
f^{\prime}(x)=2 c x, \quad f^{\prime \prime}(x)=2 c<0
$$

Note that, for $f^{\prime}(x)>0$ for $x<0$ and $f^{\prime}(x)<0$ for $x>0$. Moreover, at $f(0)=a$.

From the graph of the function, we can see that this function is strictly quasiconcave.
4. (a) $f(x)=x^{3}-2 x$

In the graph below, the blue line highlights the following upper-contour set:

$$
S^{U}=\{x \mid f(x) \geq 0\}
$$

We can see from the graph that this is not a convex set. So this function is not quasiconcave. Similarly, the lower-contour set for this function is not convex as well and this function is not quasiconvex.

(b) $f\left(x_{1}, x_{2}\right)=6 x_{1}-9 x_{2}$

Note that the upper-contour set for this function at 0 :

$$
S^{U}=\left\{\left(x_{1}, x_{2}\right) \mid 6 x_{1}-9 x_{2} \geq k\right\}
$$

Note that, $6 x_{1}-9 x_{2}=k \rightarrow x_{2}=\frac{6 x_{1}-k}{9}$. So we can write the upper-contour set as:

$$
S^{U}=\left\{\left(x_{1}, x_{2}\right) \left\lvert\, x_{2} \leq \frac{6 x_{1}-k}{9}\right.\right\}
$$

This set is presented below and is convex. Hence, the function is quasiconcave. The lower-contour set is also convex and the function is quasiconvex as well. (Grey is the upper-contour set and blue is the lower-contour set.)

(c) $f\left(x_{1}, x_{2}\right)=x_{2}-\ln x_{1}$

By similar reasoning as (b), this function is strictly quasiconcave but not quasiconvex. (Grey is the upper-contour set and blue is lower-contour set.)

Exercise 12.6

1. (a) $f(x, y)=\sqrt{x y}$

$$
f(a x, a y)=\sqrt{(a x)(a y)}=\sqrt{a^{2} x y}=a \sqrt{x y}=a f(x, y)
$$

Homogeneous of degree 1 or linearly homogenous.
(b)

$$
\begin{aligned}
f(x, y) & =\left(x^{2}-y^{2}\right)^{1 / 2} \\
f(a x, a y) & =\left((a x)^{2}-(a y)^{2}\right)^{1 / 2} \\
& =\left(a^{2} x^{2}-a^{2} y^{2}\right)^{1 / 2} \\
& =\left(a^{2}\right)^{1 / 2}\left(x^{2}-y^{2}\right)^{1 / 2}=a f(x, y)
\end{aligned}
$$

Homogeneous of degree 1.
(c) $f(x, y)=x^{3}-x y+y^{3}$

$$
f(a x, a y)=a^{3} x^{3}-a^{2} x y+a^{3} y^{3}
$$

Not homogenous.
(d) Homogeneous of degree 1.
(e) Homogeneous of degree 2.
(f) Homogeneous of degree 4.
2. Say we are given a production function $Q=f(K, L)$ that is homogenous of degree 1 or linearly homogenous.

Then dividing and multiplying by K :

$$
Q=K \cdot \frac{Q}{K}=K \cdot f\left(\frac{K}{K}, \frac{L}{K}\right)=K \cdot f\left(1, \frac{L}{K}\right)=K \cdot \psi\left(\frac{L}{K}\right)
$$

Similarly, dividing and multiplying by L :

$$
Q=L \cdot \frac{Q}{L}=L \cdot f\left(\frac{K}{L}, \frac{L}{L}\right)=L \cdot f\left(\frac{K}{L}, 1\right)=L \cdot \phi\left(\frac{K}{L}\right)
$$

6.

$$
Q=A K^{\alpha} L^{\beta}
$$

(a) and (b)

$$
f(a K, a L)=A(a K)^{\alpha}(a L)^{\beta}=A a^{(\alpha+\beta)} K^{\alpha} L^{\beta}=a^{\alpha+\beta} f(K, L)
$$

When $\alpha+\beta>1$, we have increasing returns to scale i.e. if we increase capital and labor by a-fold, output increases by more than a-fold. For eg. if we double K and L, ie. $a=2, Q$ increases by $2^{\alpha+\beta}$, which is more than double when $\alpha+\beta>1$. Analogously, when $\alpha+\beta<1$, we have decreasing returns to scale, and when $\alpha+\beta=1$, we have constant returns to scale.
(c)

$$
\begin{aligned}
& \frac{d Q}{d K}=\alpha A K^{\alpha-1} L^{\beta} \\
& \frac{d Q}{d L}=\beta A K^{\alpha} L^{\beta-1} \\
& \varepsilon_{Q, K}=\frac{d Q}{d K} \cdot \frac{K}{Q}=\frac{\alpha A K^{\alpha-1} L^{\beta}}{A K^{\alpha} L^{\beta}} \cdot K=\alpha \\
& \varepsilon_{Q, L}=\frac{d Q}{d L} \cdot \frac{L}{Q}=\frac{\beta A K^{\alpha} L^{\beta-1}}{A K^{\alpha} L^{\beta}} \cdot L=\beta
\end{aligned}
$$

7.

$$
Q=A K^{a} L^{b} N^{c}
$$

(a) $f(d k, d L, d N)=d^{a+b+c} f(k, L, N)$. Homogeneous of degree $a+b+c$.
(b) When $a+b+c=1$, constant returns to scale. When $a+b+c>0$, increasing returns to scale.
(c) Marginal product of factor N :

$$
Q_{N}=\frac{d Q}{d N}=c A K^{a} L^{b} N^{c-1}
$$

If N is paid it's marginal product, total payment to factor N is $N \cdot Q_{N}$. So it's share in the output is given by:

$$
\frac{N \cdot Q_{N}}{Q}=N \cdot \frac{c A k^{a} L^{b} N^{c-1}}{A K^{a} L^{b} N^{c}}=c
$$

