# Quasiconcave and Quasiconvex Functions 

## Definitions

- A function is quasiconcave if and only if for any pair of distinct points $u$ and $v$ in the convex domain of $f$, and for $0<\lambda<1$, we have

$$
f(\lambda u+(1-\lambda) v) \geq \min \{f(u), f(v)\}
$$

- A function is quasiconvex if and only if for any pair of distinct points $u$ and $v$ in the convex domain of $f$, and for $0<\lambda<1$, we have

$$
f(\lambda u+(1-\lambda) v) \leq \max \{f(u), f(v)\}
$$

- Replace inequalities with strict inequalities to get the definitions of strict quasiconcavity and quasiconvexity.

Answer whether the following functions are (strictly) quasiconcave, (strictly) quasiconvex, both, or neither.
a)

b)


## Alternative Definitions

- A function $f(x)$, where $x$ is a vector of variables is quasiconcave iff for any constant $k$, the upper-contour set

$$
S^{U}=\{x \mid f(x) \geq k\}
$$

is a convex set.

- A function $f(x)$, where $x$ is a vector of variables is quasiconvex iff for any constant $k$, the lower-contour set

$$
S^{L}=\{x \mid f(x) \leq k\}
$$

is a convex set.

Use the alternative definitions to answer whether the following functions are (strictly) quasiconcave, (strictly) quasiconvex, both, or neither.
a)

b)

c) $f\left(x_{1}, x_{2}\right)=6 x_{1}-9 x_{2}$

