Homework 10 Solutions

ECON 441: Introduction to Mathematical Economics
Instructor: Div Bhagia

Exercise 12.2

1. (a) $z=x y$ s.t. $x+2 y=2$

Setting up the Lagrangian:

$$
L(x, y, \lambda)=x y+\lambda(2-x-2 y)
$$

First-order conditions (F.O.C.s):

$$
\begin{align*}
& \frac{d L}{d x}=y-\lambda=0 \tag{1}\\
& \frac{d L}{d y}=x-2 \lambda=0 \tag{2}\\
& \frac{d L}{d \lambda}=2-x-2 y=0 \tag{3}
\end{align*}
$$

From (1) and (2), $y=\lambda$ and $x=2 \lambda$, so

$$
\frac{y}{x}=\frac{\lambda}{2 \lambda} \rightarrow \quad x=2 y
$$

Pugging in $x=2 y$ in (3):

$$
2-x-x=0 \rightarrow x=1
$$

Stationary point: $x^{*}=1, y^{*}=1 / 2$. Also note that from (1), $\lambda^{*}=y^{*}=1 / 2$.
(b) $2=x(y+4)$ s.t. $x+y=8$

Lagrangian function:

$$
L(x, y, \lambda)=x(y+4)+\lambda(8-x-y)
$$

First-order conditions (F.O.C.s):

$$
\begin{align*}
& L_{x}=y+4-\lambda=0 \tag{1}\\
& L_{y}=x-\lambda=0 \tag{2}\\
& L_{\lambda}=8-x-y=0 \tag{3}
\end{align*}
$$

From equations (1) and (2):

$$
\frac{y+4}{x}=\frac{\lambda}{\lambda} \rightarrow y+4=x
$$

Plugging $x=y+4$ in equation (3):

$$
8-y-4-y=0 \rightarrow y^{*}=2
$$

Stationary point: $x^{*}=y^{*}+4=6, y^{*}=2$. Also note, $\lambda^{*}=x^{*}=6$.
(c) $f(x, y)=x-3 y-x y$ s.t. $x+y=6$

Lagrangian function :

$$
L(x, y, \lambda)=x-3 y-x y+\lambda(6-x-y)
$$

First-order conditions (F.O.C.s):

$$
\begin{align*}
& \frac{d L}{d x}=1-y-\lambda=0 \tag{1}\\
& \frac{d L}{d y}=-3-x-\lambda=0 \tag{2}\\
& \frac{d L}{d \lambda}=6-x-y=0 \tag{3}
\end{align*}
$$

From equations (1) and (2):

$$
1-y=-3-x \rightarrow y=x+4
$$

Plugging in (3):

$$
6-x-x-4=2-2 x=0 \rightarrow x=1
$$

Stationary point: $x^{*}=1, y^{*}=5$
Lagrange multiplier, $\lambda^{*}=1-y^{*}=-4$
(d) $z=7-y+x^{2}$ s.t. $x+y=0$

Lagrangian function:

$$
L(x, y, \lambda)=7-y+x^{2}+\lambda(-x-y)
$$

First-order conditions (F.O.C.s):

$$
\begin{align*}
& L_{x}=2 x-\lambda=0 \tag{1}\\
& L_{y}=-1-\lambda=0 \tag{2}\\
& L_{\lambda}=-x-y=0 \tag{3}
\end{align*}
$$

From equation (2), $\lambda^{*}=-1$ From equation (1), $x^{*}=\frac{\lambda^{*}}{2}=-\frac{1}{2}$ From equation (3), $y^{*}=-x^{*}=\frac{1}{2}$

So the Stationary point: $\left(x^{*}, y^{*}\right)=\left(\frac{-1}{2}, \frac{1}{2}\right)$
2. Suppose we are interested in finding the optimal value of $f(x, y)$ subject to the constraint $g(x, y)=c$. We would start by setting up the Lagrangian function:

$$
L(x, y, \lambda)=f(x, y)+\lambda(c-g(x, y))
$$

At the optimizing point $\left(x^{*}, y^{*}\right)$, the following first-order conditions hold:

$$
\begin{align*}
& L_{x}\left(x^{*}, y^{*}, \lambda^{*}\right)=f_{x}\left(x^{*}, y^{*}\right)-\lambda^{*} g_{x}\left(x^{*}, y^{*}\right)=0 \tag{1}\\
& L_{y}\left(x^{*}, y^{*}, \lambda^{*}\right)=f_{y}\left(x^{*}, y^{*}\right)-\lambda^{*} g_{y}\left(x^{*}, y^{*}\right)=0 \tag{2}\\
& L_{\lambda}\left(x^{*}, y^{*}, \lambda^{*}\right)=c-g\left(x^{*}, y^{*}\right)=0 \tag{3}
\end{align*}
$$

Now note that implicitly the optimal inputs x^{*} and y^{*} depend on c. So we could express x^{*} and y^{*} as functions of c, i.e., $x^{*}(c)$ and $y^{*}(c)$. Then optimal value of f is given by $f\left(x^{*}(c), y^{*}(c)\right)$.
Now, say, we want to know how the optimal value of f changes if we relax
the constraint i.e. if we increase c slightly. To find this we can differentiate $f\left(x^{*}(c), y^{*}(c)\right)$ with respect to c, then by chain-rule:

$$
\begin{equation*}
\frac{d}{d c} f\left(x^{*}(c), y^{*}(c)\right)=f_{x}\left(x^{*}, y^{*}\right) \cdot \frac{d x^{*}}{d c}+f_{y}\left(x^{*}, y^{*}\right) \frac{d y^{*}}{d c} \tag{4}
\end{equation*}
$$

Now note that from (1) and (2), we have $f_{x}\left(x^{*}, y^{*}\right)=\lambda^{*} g_{x}\left(x^{*}, y^{*}\right)$ and $f_{y}\left(x^{*}, y^{*}\right)=$ $\lambda^{*} g_{y}\left(x^{*}, y^{*}\right)$. Plugging these terms in equation (4), we get:

$$
\frac{d}{d c} f\left(x^{*}(c), y^{*}(c)\right)=\lambda^{*} \underbrace{\left[g_{x}\left(x^{*}, y^{*}\right) \cdot \frac{d x^{*}}{d c}+g_{y}\left(x^{*}, y^{*}\right) \frac{d y^{*}}{d c}\right]}_{=1}
$$

The term in the parenthesis is 1 because if we take the derivative of (3) with respect to c, we get

$$
g_{x}\left(x^{*}, y^{*}\right) \cdot \frac{d x^{*}}{d c}+g_{y}\left(x^{*}, y^{*}\right) \frac{d y^{*}}{d c}=1
$$

So we have that,

$$
\frac{d}{d c} f\left(x^{*}(c), y^{*}(c)\right)=\lambda^{*}
$$

In which case, λ^{*} tells us what happens to the optimal value of the function by relaxing the constraint. Whenever, $\lambda^{*}>0$, the optimal value increases and whenever $\lambda^{*}<0$, it decreases.

Note: In the class, we came to the above conclusion by taking the derivative of L with respect to c. We showed that $d L\left(x^{*}, y^{*}, \lambda^{*}\right) / d c=\lambda^{*}$. Both approaches are equivalent because at the optimal value $L=f$ as the constraint always binds. In the hindsight, I think the proof I outline here is slightly more intuitive.
3. (a) $L(x, y, \omega, \lambda)=x+2 y+3 \omega+x y-y \omega+\lambda(10-x-y-2 \omega)$

First-order conditions:

$$
\begin{aligned}
& L_{x}=1+y-\lambda=0 \\
& L_{y}=2+x-\omega-\lambda=0 \\
& L_{\omega}=3-y-2 \lambda=0 \\
& L_{\lambda}=10-x-y-2 \omega=0
\end{aligned}
$$

(b) $L(x, y, \omega, \lambda)=x^{2}+2 x y+y \omega^{2}+\lambda\left(24-2 x-y-\omega^{2}\right)+\mu(8-x-\omega)$

First-order conditions:

$$
\begin{aligned}
& L_{x}=2 x+2 y-2 \lambda-\mu=0 \\
& L_{y}=2 x+\omega^{2}-\lambda=0 \\
& L_{\omega}=2 y \omega-2 \omega \lambda-\mu=0 \\
& L_{\lambda}=24-2 x-y-\omega^{2}=0 \\
& L_{\mu}=8-x-\omega=0
\end{aligned}
$$

4. $L(x, y, \lambda)=f(x, y)+\lambda(-G(x, y))$

First-order conditions:

$$
\begin{aligned}
& L_{x}=f_{x}-\lambda G_{x}=0 \\
& L_{y}=f_{y}-\lambda G_{y}=0 \\
& L_{\lambda}=-G(x, y)=0
\end{aligned}
$$

