Exercise 2.3

1. Write the following in set notation:
(a) The set of all real numbers greater than 34 .
(b) The set of all real numbers greater than 8 but less than 65 .
2. Given the sets $S_{1}=\{2,4,6\}, S_{2}=\{7,2,6\}, S_{3}=\{4,2,6\}$, and $S_{4}=\{2,4\}$, which of the following statements are true?
(a) $S_{1}=S_{3}$
(b) $S_{1}=\mathbb{R}$
(c) $8 \in S_{2}$
(d) $3 \notin S_{2}$
(e) $4 \notin S_{3}$
(f) $S_{4} \subset \mathbb{R}$
(g) $S_{1} \supset S_{4}$
(h) $\emptyset \subset S_{2}$
(i) $S_{3} \supset\{1,2\}$

Note that \mathbb{R} denotes the set of real numbers.

Exercise 2.4

5. If the domain of the function $y=5+3 x$ is the set $\{x \mid 1 \leq x \leq 9\}$, find the range of the function and express it as a set.
6. In the theory of the firm, economists consider the total cost C to be a function of the output level $Q: C=f(Q)$.
(a) According to the definition of a function, should each cost figure be associated with a unique output level?
(b) Should each level of output determine a unique cost figure?
7. If an output level Q_{1} can be produced at a cost of C_{1}, then it must also be possible (by being less efficient) to produce Q_{1} at a cost of $C_{1}+\$ 1$, or $C_{1}+\$ 2$, and so on. Thus it would seem that output Q does not uniquely determine total cost C. If so, to write $C=f(Q)$ would violate the definition of a function. How, in spite of this reasoning, would you justify the use of the function $C=f(Q)$?

Exercise 2.5

1. Graph the following functions and find their inverse functions.
(a) $y=16+2 x$
(b) $y=8-2 x$
(c) $y=2 x+12$

Exercise 4.2

6. Expand the following summation expressions:
(a) $\sum_{i=2}^{5} x_{i}$
(b) $\sum_{i=5}^{8} a_{i} x_{i}$
(c) $\sum_{i=1}^{4} b x_{i}$
(d) $\sum_{i=1}^{n} a_{i} x^{i-1}$
(e) $\sum_{i=0}^{3}(x+i)^{2}$
7. Show that the following are true:
(a) $\left(\sum_{i=0}^{n} x_{i}\right)+x_{n+1}=\sum_{i=0}^{n+1} x_{i}$
(b) $\sum_{j=1}^{n} a b_{j} y_{j}=a \sum_{j=1}^{n} b_{j} y_{j}$
(c) $\sum_{j=1}^{n}\left(x_{j}+y_{j}\right)=\sum_{j=1}^{n} x_{j}+\sum_{j=1}^{n} y_{j}$

Exercise 5.1

1. In the following paired statements, let p be the first statement and q the second. Which is true for each case: $p \Rightarrow q, p \Leftarrow q$, or $p \Leftrightarrow q$?
(a) It is a holiday; it is Thanksgiving Day.
(b) A geometric figure has four sides; it is a rectangle.
(c) Two ordered pairs (a, b) and (b, a) are equal; a is equal to b.
(d) A number is rational; it can be expressed as a ratio of two integers.
(e) A 4×4 matrix is nonsingular; the rank of the 4×4 matrix is 4 . (skip for now)
(f) The gasoline tank in my car is empty; I cannot start my car.
(g) The letter is returned to the sender with the marking "addressee unknown"; the sender wrote the wrong address on the envelope.
