ECON 441

Introduction to Mathematical Economics

Div Bhagia

Lecture 1: Preliminaries

Today's Topics \& References

- Numbers and sets (sections 2.2 and 2.3)
- Relations and functions (sections 2.4-2.6, page 163)
- Summation notation (handout)
- Necessary and sufficient conditions (beginning of 5.1)

Numbers and Sets

Real-Number System

- Integers:

$$
\ldots,-3,-2,-1,0,1,2,3, \ldots
$$

Real-Number System

- Integers:

$$
\ldots,-3,-2,-1,0,1,2,3, \ldots
$$

- Fractions:

$$
\frac{1}{2}, \frac{3}{5},-\frac{2}{3}
$$

Real-Number System

- Integers:

$$
\ldots,-3,-2,-1,0,1,2,3, \ldots
$$

- Fractions:

$$
\frac{1}{2}, \frac{3}{5},-\frac{2}{3}
$$

- Rational numbers: ratio of integers

Real-Number System

- Integers:

$$
\ldots,-3,-2,-1,0,1,2,3, \ldots
$$

- Fractions:

$$
\frac{1}{2}, \frac{3}{5},-\frac{2}{3}
$$

- Rational numbers: ratio of integers

Are fractions rational numbers? What about integers?

Real-Number System

- Rational numbers: ratio of integers
"terminating or repeating decimal"

$$
\text { Example. } \frac{1}{3}=0.333, \frac{1}{4}=0.25
$$

Real-Number System

- Rational numbers: ratio of integers
"terminating or repeating decimal"

$$
\text { Example. } \frac{1}{3}=0.333, \frac{1}{4}=0.25
$$

- Irrational numbers: cannot be expressed as a ratio of two integers
"nonterminating or nonrepeating decimal"

$$
\text { Example. } \sqrt{2}=1.4142, \pi=3.1415
$$

Real-Number System

- Rational numbers: ratio of integers
"terminating or repeating decimal"

$$
\text { Example. } \frac{1}{3}=0.333, \frac{1}{4}=0.25
$$

- Irrational numbers: cannot be expressed as a ratio of two integers
"nonterminating or nonrepeating decimal"

$$
\text { Example. } \sqrt{2}=1.4142, \pi=3.1415
$$

- Real numbers (\mathbb{R}) : rational and irrational

Sets

- A set is a collection of distinct objects.

$$
A=\{\text { brownies, icecream, pizza, ramen }\}
$$

- pizza $\in A, \in$ stands for 'is in'

Sets

- A set is a collection of distinct objects.

$$
A=\{\text { brownies, icecream, pizza, ramen }\}
$$

- pizza $\in A, \in$ stands for 'is in'
- What about sets B and C ?

$$
\begin{gathered}
B=\{x \mid x \text { is a positive integer }\} \\
C=\{x \mid 1<x<5\}
\end{gathered}
$$

Set Relations

1. Equivalence (=)

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
B=\{\text { pizza, ramen, icecream, brownies }\} \\
A=B
\end{gathered}
$$

Set Relations

1. Equivalence (=)

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
B=\{\text { pizza, ramen, icecream, brownies }\} \\
A=B
\end{gathered}
$$

2. Subset (\subset)

$$
C=\{\text { pizza }, \text { ramen }\}
$$

$C \neq A$ but $C \subset A$.
Note: $A \supset C$ is equivalent.

Set Relations

1. Equivalence (=)

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
B=\{\text { pizza, ramen, icecream, brownies }\} \\
A=B
\end{gathered}
$$

2. Subset (\subset)

$$
C=\{\text { pizza }, \text { ramen }\}
$$

$C \neq A$ but $C \subset A$.
Note: $A \supset C$ is equivalent.

Is $A \subset B$?

Set Relations

1. Equivalence (=)

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
B=\{\text { pizza, ramen, icecream, brownies }\} \\
A=B
\end{gathered}
$$

2. Subset (\subset)

$$
C=\{\text { pizza }, \text { ramen }\}
$$

$C \neq A$ but $C \subset A$.
Note: $A \supset C$ is equivalent.
Is $A \subset B$? Yes, but C is a proper subset of A.

Set Relations

3. Disjoint sets

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
D=\{\text { salad, fruits }\}
\end{gathered}
$$

Set Relations

3. Disjoint sets

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
D=\{\text { salad, fruits }\}
\end{gathered}
$$

4. Neither but still related

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
E=\{\text { salad, fruits, icecream }\}
\end{gathered}
$$

Set Relations

- \varnothing : empty or null set

Set Relations

- \varnothing : empty or null set
- What are all possible subsets of

$$
S=\{a, b, c\}
$$

Set Relations

- \varnothing : empty or null set
- What are all possible subsets of

$$
\begin{gathered}
S=\{a, b, c\} \\
\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}
\end{gathered}
$$

Set Relations

- \varnothing : empty or null set
- What are all possible subsets of

$$
S=\{a, b, c\}
$$

$\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}$
Always 2^{n} subsets. Here $n=3$, so 8 subsets.

Set Operations

1. Union: $A \cup B$, elements in either A or B
2. Intersection: $A \cap B$, elements in both A and B

Example:

$$
\begin{aligned}
A= & \{\text { brownies, icecream, pizza, ramen }\} \\
& B=\{\text { salad, fruits, icecream }\}
\end{aligned}
$$

$A \cup B=$
$A \cap B=$

Set Operations

1. Union: $A \cup B$, elements in either A or B
2. Intersection: $A \cap B$, elements in both A and B

What about

$$
\begin{gathered}
A=\{\text { brownies, icecream, pizza, ramen }\} \\
B=\{\text { salad, fruits }\}
\end{gathered}
$$

$A \cup B=$
$A \cap B=$

Set Operations

3. Complement of $A: \tilde{A}$, 'not A '

Universal set U (context specific) then:

$$
\tilde{A}=\{x \mid x \in U \text { and } x \notin A\}
$$

Example. $U=\{1, e, f, 2\}, A=\{1,2\}$, then $\tilde{A}=\{e, f\}$.

Set Operations: Venn Diagrams

Laws of Set Operations

- Commutative law

$$
A \cup B=B \cup A \quad A \cap B=B \cap A
$$

- Distributive law

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

Distributive law

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

A

Distributive law

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

$A \cup B$

Ordered Sets

- We said order does not matter for sets
- But we can have ordered sets where

$$
(a, b) \neq(b, a) \text { unless } a=b
$$

- Ordered pairs, triples,...

Example. (age, weight), $(22,120)$ different from $(120,22)$

Cartesian Product

$$
A=\{1,2\} \quad B=\{3,4\}
$$

Cartesian Product: set of all possible ordered pairs

$$
A \times B=\{(1,3),(1,4),(2,3),(2,4)\}
$$

Cartesian Plane

$$
\mathbb{R}^{2}=\{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}
$$

Can have $\mathbb{R}^{3}, \mathbb{R}^{4}, \ldots, \mathbb{R}^{n}$

Relations and Functions

Relations

Relation: subset of the Cartesian product
Example. $\{(x, y) \mid y \leqslant x\}$

Functions

Function: a relation where for each x there is a unique y

$$
f: X \rightarrow Y, \quad y=f(x)
$$

Examples. $y=x, y=x^{2}, y=2 x+3$
X : domain, Y : codomain, $f(X)$: range
Most functions we will encounter, $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$

Functions

Let's say,

$$
f: X \rightarrow \mathbb{R}, \quad y=3 x-5
$$

where $X=\{2,3,4\}$.
What is the range?

Cost Function

Consider the total cost C of producing hats Q,

$$
C=f(Q)
$$

- Should I be able to produce 10 hats and 5 hats at the same cost?
- Possible to produce 5 hats for $\$ 20$ and $\$ 25$?

By the way

Consider the total cost C of producing hats Q,

$$
C=f(Q)=2 Q+5
$$

What is the cost of producing 1 hat?
What is the cost of producing 2 hats?
How many hats can I produce for $\$ 25$?

Types of Functions

- Constant: $y=f(x)=5$
- Polynomial of degree n

$$
\begin{aligned}
& n=0, \text { constant } \\
& n=1, \text { linear } \\
& n=2, \text { quadratic } \\
& n=3, \text { cubic }
\end{aligned}
$$

- Rational function: ratio of two polynomial functions:

$$
y=\frac{a}{x}
$$

Function of More than One Variables

Functions can be of two variables:

$$
z=g(x, y)
$$

Or three, or four,..., or n

Monotonic functions

Strictly increasing function:

$$
x_{1}>x_{2} \rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
$$

Strictly decreasing function:

$$
x_{1}>x_{2} \rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

Increasing function:

$$
x_{1}>x_{2} \rightarrow f\left(x_{1}\right) \geqslant f\left(x_{2}\right)
$$

Decreasing function:

$$
x_{1}>x_{2} \rightarrow f\left(x_{1}\right) \leqslant f\left(x_{2}\right)
$$

Inverse of a function

Function $y=f(X)$ has an inverse if it is a one-to-one mapping, i.e. each value of y is associated with a unique value of x.

Inverse function

$$
x=f^{-1}(y)
$$

returns the value corresponding value of x for each y.
One-to-one mapping unique to strictly monotonic functions

Inverse of a function

Example: Find the inverse of $y=f(x)=3 x-2$.

By the way

What is $x \times x$?
What is $x^{2} x x$?
What is $x^{2} \times x^{2}$?
More generally, $x^{n} \times x^{m}=x^{m+n}$

Summation Notation

Summation Notation

$$
\sum_{i=1}^{N} x_{i}=x_{1}+x_{2}+\ldots+x_{N}
$$

Example:
$x=\{2,9,6,8,11,14\}$
$\sum_{i=1}^{4} x_{i}=x_{1}+x_{2}+x_{3}+x_{4}=2+9+6+8=25$

Summation Notation

Another way of using a summation sign is to write

$$
\sum_{x \in A} x
$$

which refers to summing up all elements in A.
To sum up x for all possible values x, we can simply write

$$
\sum_{x} x
$$

Things you CAN do

1. Pull constants out of or into the summation sign.

$$
\sum_{i=1}^{N} b x_{i}=b \sum_{i=1}^{N} x_{i}
$$

Things you CAN do

2. Split apart (or combine) sums (addition) or differences (subtraction)

$$
\sum_{i=1}^{N}\left(b x_{i}+c y_{i}\right)=b \sum_{i=1}^{N} x_{i}+c \sum_{i=1}^{N} y_{i}
$$

Things you CAN do

3. Multiply through constants by the number of terms in the summation

$$
\sum_{i=1}^{N}\left(a+b x_{i}\right)=a N+b \sum_{i=1}^{N} x_{i}
$$

Things you CANNOT do

1. Split apart (or combine) products (multiplication) or quotients (division).

$$
\sum_{i=1}^{N} x_{i} y_{i} \neq \sum_{i=1}^{N} x_{i} \times \sum_{i=1}^{N} y_{i}
$$

Things you CANNOT do

2. Move the exponent out of or into the summation.

$$
\sum_{i=1}^{N} x_{i}^{a} \neq\left(\sum_{i=1}^{N} x_{i}\right)^{a}
$$

Necessary and Sufficient Conditions

Necessary vs. Sufficient Conditions

q is a necessary condition for p if:

$$
p \Longrightarrow q
$$

Necessary vs. Sufficient Conditions

q is a necessary condition for p if:

$$
p \Longrightarrow q
$$

p : I ate tofu for dinner
q : My dinner had protein

Necessary vs. Sufficient Conditions

q is a sufficient condition for p if:

$$
p \Longleftarrow q
$$

Necessary vs. Sufficient Conditions

q is a sufficient condition for p if:

$$
p \Longleftarrow q
$$

p : A number is even
q : A number is divisible by 4

Necessary vs. Sufficient Conditions

q is both necessary and sufficient for p

$$
p \Longleftrightarrow q
$$

Necessary vs. Sufficient Conditions

q is both necessary and sufficient for p

$$
p \Longleftrightarrow q
$$

p : A number is even
q : A number is divisible by 2

Necessary vs. Sufficient Conditions

p : It is a holiday
q : It is Thanksgiving

Necessary vs. Sufficient Conditions

p : The car is out of gas
q : The car isn't starting

Necessary vs. Sufficient Conditions

p : A geometric figure has four sides
q : It is a rectangle

Homework Questions

- Exercise 2.3: 1, 2
- Exercise 2.4: 5, 7, 8
- Exercise 2.5: 1 (For each part, find the inverse of the function too.)
- Exercise 4.2: 6, 8
- Exercise 5.1: 1

