Midterm Spring 2024

ECON 441: Introduction to Mathematical Economics
Instructor: Div Bhagia

Print Name: \qquad

This is a closed-book test. You may not use a phone or a computer.

Time allotted: 110 minutes
Total points: 30

Please show sufficient work so that the instructor can follow your work.

I understand and will uphold the ideals of academic honesty as stated in the honor code.

Signature: \qquad

1. (6 pts) Answer the following questions.
(a) (1 pt) Consider a mapping $f(x)$. For two distinct values of x, x_{0} and x_{1}, $f\left(x_{0}\right)=f\left(x_{1}\right)$. Is f a valid function? Answer yes or no.
(b) (2 pts) Find the union and intersection for the following sets:

$$
A=\{x: x \text { is an even number }\} \quad B=\{2,4,8\}
$$

(c) (1 pt) Consider the following two-variable function:

$$
f(x, y)=x+y
$$

where $x \in(0,1)$ and $y \in(0,1)$. What is the range of f ?
(d) (1 pt) Given a system of linear equations $A x=b$, if $|A|=5$, what can we say about the solution for this system of equations?
\square Has no solution.

- Has a unique solution.
- Has infinitely many solutions.
\square None of the above
(e) (1 pt) Is the function $y=|x|$ continuous at $x=0$? Answer yes or no.

2. (5 pts) Consider the following matrix

$$
A=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}
$$

(a) (3 pts) Is A a square matrix? Show your work or reasoning that led you to this conclusion.
(b) (2 pts) Prove that A is idempotent i.e. $A A=A$.
3. (8 pts) Consider the following system of equations:

$$
\begin{aligned}
x-2 z & =2 \\
y+z & =12 \\
x+y+z & =24
\end{aligned}
$$

(a) (1 pt) Write this system of equations in matrix format i.e.,

$$
A v=b
$$

What is A, v, and b equal to?
(b) (2 pts) Calculate the adjoint of A.
(c) (2 pts) Calculate the determinant of A. Is A nonsingular?
(d) (1 pt) If you premultiply A^{-1} on both sides of the equation $A v=b$, you should be able to derive an expression to solve for v. Write down this expression.
(e) (2 pts) Using the expression in (d) solve for v^{*}.
4. (4 pts) Differentiate the following functions:
(a) $y=3 x^{3}+x^{2}+4$
(b) $\frac{1}{x}+3 x^{2}$
(c) $\frac{x-1}{x^{2}+3}$
5. (5 pts) Here is a demand function:

$$
Q=100-0.4 p
$$

where $Q>0$ is the quantity demanded and $p>0$ is the price.
(a) Calculate the elasticity of demand ε in terms of p.
(b) What is the elasticity at $p=50$? What about at $p=100$? Is demand elastic $(|\varepsilon|>1)$ or inelastic $(|\varepsilon|<1)$ at these prices?
(c) Is the elasticity monotonically decreasing or increasing with price? (Note: I suggest taking the derivative of ε with respect to p instead of guessing.)
6. (2 pts) Say we have the following relationship between income (Y), consumption (C), and saving (S).

$$
Y=C+S
$$

In addition, saving depends on interest rate i as follows:

$$
S=g(i)+100
$$

Find the total derivative of income with respect to the interest rate.

