Midterm Spring 2024: Solutions

Print Name: \qquad

This is a closed-book test. You may not use a phone or a computer.

Time allotted: 110 minutes
Total points: 30

Please show sufficient work so that the instructor can follow your work.

I understand and will uphold the ideals of academic honesty as stated in the honor code.

Signature: \qquad

1. (6 pts) Answer the following questions.
(a) (1 pt) Consider a mapping $f(x)$. For two distinct values of x, x_{0} and x_{1}, $f\left(x_{0}\right)=f\left(x_{1}\right)$. Is f a valid function? Answer yes or no. Yes
(b) (2 pts) Find the union and intersection for the following sets:

$$
A=\{x: x \text { is an even number }\} \quad B=\{2,4,8\}
$$

$$
\mathbf{A} \cup \mathbf{B}=\mathbf{A} \quad \mathbf{A} \cap \mathbf{B}=\mathbf{B}
$$

(c) (1 pt) Consider the following two-variable function:

$$
f(x, y)=x+y
$$

where $x \in(0,1)$ and $y \in(0,1)$. What is the range of f ?

$(\mathbf{0}, \mathbf{2})$

(d) (1 pt) Given a system of linear equations $A x=b$, if $|A|=5$, what can we say about the solution for this system of equations?
\square Has no solution.
\boxtimes Has a unique solution.

- Has infinitely many solutions.
\square None of the above
(e) (1 pt) Is the function $y=|x|$ continuous at $x=0$? Answer yes or no. Yes

2. (5 pts) Consider the following matrix

$$
A=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}
$$

(a) (3 pts) Is A a square matrix? Show your work or reasoning that led you to this conclusion.

Say the dimension of X is $m \times n$. Then the dimension of $X_{n \times m}^{\prime} X_{m \times n}$ is $n \times n$. So the dimension of $\left(X^{\prime} X\right)^{-1}$ is also $n \times n$. This implies that the dimension of $X_{m \times n}\left(X^{\prime} X\right)_{n \times n}^{-1} X_{n \times m}^{\prime}$ is $m \times m$. Hence, $X^{\prime} X$ and A must be square matrices, but X need not be square.
(b) (2 pts) Prove that A is idempotent i.e. $A A=A$.

$$
\begin{aligned}
A A & =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}-X\left(X^{\prime} X\right)^{-1} X^{\prime}+X \underbrace{\left(X^{\prime} X\right)^{-1} X^{\prime} X}_{I}\left(X^{\prime} X\right)^{-1} X^{\prime} \\
& =I-X\left(X^{\prime} X\right)^{-1} X^{\prime}=A
\end{aligned}
$$

3. (8 pts) Consider the following system of equations:

$$
\begin{aligned}
x-2 z & =2 \\
y+z & =12 \\
x+y+z & =24
\end{aligned}
$$

(a) (1 pt) Write this system of equations in matrix format i.e.,

$$
A v=b
$$

What is A, v, and b equal to?

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad v=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad b=\left[\begin{array}{c}
2 \\
12 \\
24
\end{array}\right]
$$

(b) (2 pts) Calculate the adjoint of A.

We first need to calculate all the cofactors of A.
$\left|C_{11}\right|=\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|=0 \quad\left|C_{12}\right|=-1\left|\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right|=1 \quad\left|C_{13}\right|=\left|\begin{array}{cc}0 & 1 \\ 1 & 1\end{array}\right|=-1$
$\left|C_{21}\right|=-1\left|\begin{array}{cc}0 & -2 \\ 1 & 1\end{array}\right|=-2 \quad\left|C_{22}\right|=\left|\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right|=3 \quad\left|C_{23}\right|=-1\left|\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right|=-1$
$\left|C_{31}\right|=\left|\begin{array}{cc}0 & -2 \\ 1 & 1\end{array}\right|=2 \quad\left|C_{32}\right|=-1\left|\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right|=-1 \quad\left|C_{33}\right|=\left|\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right|=1$
$\operatorname{Adj} A=\left[\begin{array}{ccc}0 & -2 & 2 \\ 1 & 3 & -1 \\ -1 & -1 & 1\end{array}\right]$
(c) (2 pts) Calculate the determinant of A. Is A nonsingular?

$$
\begin{aligned}
|A| & =a_{11}\left|c_{11}\right|+a_{12}\left|c_{12}\right|+a_{13}\left|c_{13}\right| \\
& =1.0+0.1+(-2) \cdot(-1)=2
\end{aligned}
$$

A is nonsingular as $|A| \neq 0$.
(d) (1 pt) If you premultiply A^{-1} on both sides of the equation $A v=b$, you should be able to derive an expression to solve for v. Write down this expression.

Premultiplying by A^{-1} :

$$
A^{-1} A v=A^{-1} b
$$

Since $A^{-1} A=I$, we have $v^{*}=A^{-1} b$.
(e) (2 pts) Using the expression in (d) solve for v^{*}.

Since, $A^{-1}=\frac{1}{|A|} A d j A$

$$
\begin{aligned}
v^{*} & =\frac{1}{2}\left[\begin{array}{rrr}
0 & -2 & 2 \\
1 & 3 & -1 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
12 \\
24
\end{array}\right]_{3 \times 1} \\
& =\frac{1}{2}\left[\begin{array}{c}
-24+48 \\
2+36-24 \\
-2-12+24
\end{array}\right]=\left[\begin{array}{c}
12 \\
7 \\
5
\end{array}\right]
\end{aligned}
$$

Checking if it's correct:

$$
12-2(5)=2, \quad 7+5=12, \quad 12+7+5=24
$$

4. (4 pts) Differentiate the following functions:
(a)

$$
y=3 x^{3}+x^{2}+4, \quad \frac{d y}{d x}=9 x^{2}+2 x
$$

(b)

$$
y=\frac{1}{x}+3 x^{2}, \quad \frac{d y}{d x}=\frac{-1}{x^{2}}+6 x
$$

(c)

$$
y=\frac{x-1}{x^{2}+3}, \quad \frac{d y}{d x}=\frac{1\left(x^{2}+3\right)-2 x(x-1)}{\left(x^{2}+3\right)^{2}}=\frac{-x^{2}+2 x+3}{\left(x^{2}+3\right)^{2}}
$$

5. (5 pts) Here is a demand function:

$$
Q=100-0.4 p
$$

where Q is the quantity demanded and p is the price.
(a) Calculate the elasticity of demand ε in terms of p.

$$
\varepsilon=\frac{d Q}{d p} \cdot \frac{p}{Q}=\frac{-0.4 p}{100-0.4 p}
$$

(b) What is the elasticity at $p=50$? What about at $p=100$? Is demand elastic $(|\varepsilon|>1)$ or inelastic $(|\varepsilon|<1)$ at these prices?

At $p=50, \varepsilon=-\frac{1}{4}=-0.25$
At $p=100, \varepsilon=-\frac{2}{3}=-0.66$
Demand is inelastic at these prices.
(c) Is the elasticity monotonically decreasing or increasing with price? (Note: I suggest taking the derivative of ε with respect to p instead of guessing.)

$$
\begin{aligned}
\frac{d \varepsilon}{d p} & =\frac{-0.4(100-0.4 p)+0.4(-0.4 p)}{(100-0.4 p)^{2}} \\
& =\frac{-40+0.16 p-0.16}{(100-0.4 p)^{2}} \\
& =\frac{-40}{(100-0.4 p)^{2}}<0
\end{aligned}
$$

ε is monotonically decreasing in price. Higher the price, more elastic the demand is.
6. (2 pts) Say we have the following relationship between income (Y), consumption (C), and saving (S).

$$
Y=C+S
$$

In addition, saving depends on interest rate i as follows:

$$
S=g(i)+100
$$

Find the total derivative of income with respect to the interest rate.

$$
\frac{d Y}{d i}=\frac{d Y}{d C} \cdot \underbrace{\frac{d C}{d i}}_{0}+\underbrace{\frac{d Y}{d S}}_{1} \cdot \underbrace{\frac{d S}{d i}}_{g^{\prime}(i)}=g^{\prime}(i)
$$

