Fall 2022 Midterm Exam: Solutions

Print Name: \qquad

This is a closed-book test. You may not use a phone or a computer.

Time allotted: 110 minutes
Total points: 30

Please show sufficient work so that the instructor can follow your work.

I understand and will uphold the ideals of academic honesty as stated in the honor code.

Signature: \qquad

1. (5 pts) Answer the following questions (1 point each)
(a) The cartesian product of two sets X and Y is defined as:

$$
X \times Y=\{(x, y) \mid x \in X, y \in Y\}
$$

What is the cartesian product of $X=\{a, b\}$ and $Y=\{2,1\}$?

$$
X \times Y=\{(a, 2),(b, 2),(a, 1),(b, 1)\}
$$

(b) A matrix's inverse exists if its determinant is equal to 0 .

- True
\square False
(c) The function $f(x)=|x|$ is differentiable at $x=0$.
- True
\square False
(d) For the function $f(x)=e^{x}, f^{\prime}(x)=f(x)$
\square True
- False
(e) What is the derivative of $y=3 x^{2}+2$?

$$
\frac{d y}{d x}=6 x
$$

2. (5 pts) Given the vector x and matrix A below, show that $x^{\prime} A x$ represents a weighted sum of squares. What is the dimension of $x^{\prime} A x$?

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad A=\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right] \\
& x^{\prime} A x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]_{1 \times 2}\left[\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right]_{2 \times 2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{2 \times 1} \\
& =\left[\begin{array}{ll}
a_{11} x_{1} & a_{22} x_{2}
\end{array}\right]_{1 \times 2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{2 \times 1} \\
& =a_{11} x_{1}^{2}+a_{22} x_{2}^{2}=\sum_{i=1}^{2} a_{i i} x_{i}^{2}
\end{aligned}
$$

Dimension of $x^{\prime} A x$ is 1×1.
3. (4 pts) Say I have a system of m equations with n unknowns.

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots a_{m n} x_{n}=b_{m}
\end{gathered}
$$

(a) (1 pt) What is the necessary condition for the existence of a unique solution for this system in terms of m and n ?

Necessary condition for the existence of a unique solution is that the number of equations is equal to the number of unknowns i.e. $m=n$.
(b) (1 pt) What is the sufficient condition for the existence of a unique solution for this system?

Sufficient condition for the existence of a unique solution is that all the equations are linearly independent.
(c) (2 pts) How would you use the tools learned in linear algebra to solve this system of equations?

I would start by writing out the above system of equations in matrix format, i.e.

$$
A x=b
$$

where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Now note that premultiplying $A x=b$ by A^{-1} implies that $x=A^{-1} b$. So I would find the inverse of A and multiply it with the vector b to find the solution to this system of equations.
4. (6 pts) Find the derivative for the following functions (2 pts each):
(a) $y=\ln \left(x^{2}+1\right)$

$$
\frac{d y}{d x}=\frac{2 x}{x^{2}+1}
$$

(b) $y=\frac{e^{x}}{1+e^{x}}$

$$
\frac{d y}{d x}=\frac{e^{x}\left(1+e^{x}\right)-e^{x} e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}
$$

(c) $y=v+v^{3} \quad$ where $v=x+1$

$$
\frac{d y}{d x}=\frac{d y}{d v} \cdot \frac{d v}{d x}=\left(1+3 v^{2}\right) \cdot 1=1+3(x+1)^{2}
$$

5. (5 pts) Given the consumption function

$$
C=200+0.6 Y
$$

where C is consumption, and Y is income.
(a) (3 pts) Find the income elasticity of consumption $\varepsilon_{C Y}$, and determine its sign, assuming $Y>0$.

$$
\varepsilon_{C Y}=\frac{d C}{d Y} \cdot \frac{Y}{C}=\frac{0.6 Y}{200+0.6 Y}>0
$$

(b) (1 pt) Show that this consumption function is inelastic at all positive income levels.

$$
0.6 Y<200+0.6 Y \rightarrow \varepsilon_{C Y}<1
$$

(c) (1 pt) What is the income elasticity of consumption when income is equal to \$1000?

$$
\varepsilon_{C Y}=\frac{0.6 \times 1000}{200+0.6 \times 1000}=\frac{600}{800}=\frac{3}{4}=0.75
$$

(d) (1 pt) If income increases by 1% from $\$ 1000$ to $\$ 1010$, by what percent does consumption increase?

By the definition of elasticity, a 1% increase in income leads to a 0.75% increase in consumption.
6. (5 pts) Given the following function:

$$
f(x, y, z)=x y z
$$

(a) (2 pts) Find the partial derivatives f_{x}, f_{y}, and f_{z}.

$$
f_{x}=y z, f_{y}=x z, f_{z}=x y
$$

(b) (1 pt) Find the gradient of f.

$$
\nabla f=\left[\begin{array}{l}
y z \\
x z \\
x y
\end{array}\right]
$$

(c) (1 pt) Find the total differential of f. You can denote it by $d f$.

$$
\begin{aligned}
d f & =f_{x} \cdot d x+f_{y} \cdot d y+f_{z} \cdot d z \\
& =y z \cdot d x+x z \cdot d y+x y \cdot d z
\end{aligned}
$$

(d) (1 pt) Find the total derivative of f with respect to x ?

$$
\frac{d f}{d x}=f_{x}+f_{y} \cdot \frac{d y}{d x}+f_{z} \cdot \frac{d z}{d x}
$$

Since, $\frac{d y}{d x}=0, \frac{d z}{d x}=0$

$$
\frac{d f}{d x}=f_{x}=y z
$$

