Midterm Exam: Help Sheet

Linear Algebra

The minor of the element $a_{i j}$, denoted by $\left|M_{i j}\right|$ is obtained by deleting the i th row and j th column of the matrix and taking the determinant of the resulting matrix.

Whereas, cofactor $\left|C_{i j}\right|$ is defined as:

$$
\left|C_{i j}\right|=(-1)^{i+j}\left|M_{i j}\right|
$$

Determinant for an $n \times n$ matrix when expanding with respect to the first row is given by:

$$
|A|=\sum_{j=1}^{n} a_{1 j}\left|C_{1 j}\right|
$$

To find the inverse of matrix A take the transpose of its cofactor matrix $C=\left[\left|C_{i j}\right|\right]$ to find the adjoint of A and divide it by the determinant of A.

$$
A^{-1}=\frac{1}{|A|} \operatorname{adj} A
$$

Adjoint of a $n \times n$ matrix

$$
\operatorname{adj} A=C^{\prime}=\left[\begin{array}{llll}
\left|C_{11}\right| & \left|C_{21}\right| & \ldots & \left|C_{n 1}\right| \\
\left|C_{12}\right| & \left|C_{22}\right| & \ldots & \left|C_{n 2}\right| \\
\vdots & \vdots & \ldots & \vdots \\
\left|C_{1 n}\right| & \left|C_{2 n}\right| & \ldots & \left|C_{n n}\right|
\end{array}\right]
$$

Cramer's rule: Given $A x=b$, form matrix A_{k} by interchanging the $k^{t h}$ column of A by b, then

$$
x_{k}^{*}=\frac{\left|A_{k}\right|}{|A|}
$$

Comparative Statics

Limit Definition of the Derivative

$$
\frac{d y}{d x}=f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

Limit of a function

We say the limit of a function $f(x)$ exists at $x=a$ if both the right-side and left-side limits at a are equal.

Continuity of a Function
A function $y=f(x)$ is said to be continuous at a if the limit of $f(x)$ at a exists and is equal to the value of the function at a i.e., $\lim _{x \rightarrow a} f(x)=f(a)$.

Product Rule

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

Quotient Rule

$$
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Inverse Function Rule
For $y=f(x)$ and $x=f^{-} 1(y)$

$$
\frac{d y}{d x}=\frac{1}{d x / d y}
$$

Chain Rule

For functions $z=f(y)$ and $y=g(x)$,

$$
\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}=f^{\prime}(y) g^{\prime}(x)
$$

Derivative of Exponential \& Log function

$$
\frac{d}{d x} e^{x}=e^{x} \quad \frac{d}{d x} \ln x=\frac{1}{x}
$$

Partial Derivative

If x_{1} changes by Δx_{1} but all other variables remain constant:

$$
\frac{\Delta y}{\Delta x_{1}}=\frac{f\left(x_{1}+\Delta x_{1}, x_{2}, \cdots, x_{n}\right)-f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}{\Delta x_{1}}
$$

The partial derivative of y with respect to x_{i} :

$$
\frac{\partial y}{\partial x_{i}}=f_{i}=\lim _{\Delta x_{i} \rightarrow 0} \frac{\Delta y}{\Delta x_{i}}
$$

Gradient Vector

$$
\nabla f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left[f_{1}, f_{2}, \cdots, f_{n}\right]^{\prime}
$$

Elasticity

$$
\varepsilon=\frac{\text { Percentage change in } y}{\text { Percentage change in } x}=\frac{d y / y}{d x / x}=\frac{d y}{d x} \cdot \frac{x}{y}
$$

Total differential

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}=\sum_{i=1}^{n} f_{i} d x_{i}
$$

Total derivative

Total derivative with respect to x_{1} :

$$
\frac{d f}{d x_{1}}=\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d x_{1}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d x_{1}}
$$

If x_{i} doesn't depend on x_{1} then $d x_{i} / d x_{1}=0$. If f does not directly depend on x_{1} then $\partial f / \partial x_{1}=0$.

